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A B S T R A C T

The atmosphere is an exemplary case of uncertain system. The state of such systems is described by means of
probability density functions which encompass uncertainty information. In this regard, the Liouville equation is
the theoretical framework to predict the evolution of the state of uncertain systems. This study analyses the
morphological characteristics of the time evolution of probability density functions for some low complexity
geophysical systems by solving the Liouville equation in order to obtain tractable solutions which are otherwise
unfeasible with currently available computational resources. The current and usual modest approach to over-
come these obstacles and estimate the probability density function of the system in realistic weather and climate
applications is the use of a discrete and small number of samples of the state of the system, evolved individually
in a deterministic, perhaps sometimes stochastic, way. We investigate particular solutions of the shallow water
equations and the barotropic model that allow to apply the Liouville formalism to explore its topological
characteristics and interpret them in terms of the ensemble prediction system approach. We provide quantitative
evidences of the high variability that solutions to Liouville equation may present, challenging currently accepted
uses and interpretations of ensemble forecasts.

1. Introduction

Understanding the fundamentals of weather forecasting is one of the
most challenging problems the scientific community currently faces,
not only for its academic value but also for its potential benefits on
multiple socioeconomic assets. Among other less critical applications,
weather forecasts are routinely used to guide civil protection agencies
in their mission against severe weather events in order to prevent
personal and material losses (WMO, 2012; Yano et al., 2018).

From the seminal works of Charney in the early 1950s (Charney,
1951), we recognize that unlike other natural phenomena such as tides,
which can be precisely predicted from accurate observations, the at-
mosphere does not manifest periodicities that enable to predict its state
from recurrence. The common alternative forecasting approach consists
in solving the governing equations of the dynamical system, initialized
from a representation of the actual conditions of the day. However,
multiple error sources degrade the forecasting process.

Current numerical weather prediction models have essentially two
sources of errors: the description of the initial state of the atmosphere,
and the modeling of the physical processes and their interaction with
external components (oceans, orography and cryosphere among

others). The lack of infinitely precise knowledge about the state of the
atmosphere, partly due to an insufficient observational sampling com-
pared to the enormous number of degrees of freedom of the system,
induce errors in the description of the system. Despite the advances in
variational data assimilation methods currently used to produce the
best estimate of the state of the system (Carrassi et al., 2018), initial
conditions for numerical forecasts still contain relevant errors, which
need to be characterized and adequately sampled.

The second source of uncertainty arises from the incomplete
knowledge of some physical processes and their discrete implementa-
tion in numerical models. The parametrization of sub-grid scale me-
chanisms required to account for not fully represented or even absent
processes is one of the main causes of model error (Palmer, 2000).
There are different approaches to account for model uncertainties, such
as multi-model ensembles (Harrison et al., 1999) or stochastic para-
meterizations, (e.g. Buizza et al., 1999; Berner et al., 2017).

Forecasting the atmosphere involves uncertainty, and the mathe-
matical framework to model uncertainties is probability theory. The
degree of uncertainty in the state of a system is expressed by means of a
probability density function (PDF). Such multidimensional function is
defined over a vector space that represents all possible states of the
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system, i.e. the phase space (Lorenz, 1963). While a fully deterministic
evolution of the system is represented by a single trajectory in phase
space, the perfect-model evolution of an uncertain state (i.e., the state
PDF) fulfills the Liouville equation (LE;Ehrendorfer, 2006). A more
general framework, which includes stochastic sources of model error is
the Fokker-Planck equation (Hasselmann, 1976; Thompson, 1985).

Although the importance of initial conditions was already pointed
out by Thompson (1957), the work of Lorenz (1963) was the first that
specifically reported that two slightly different initial conditions may
evolve into highly different states, eventually rendering a worthless
forecast. The notion of deterministic chaos referring to irregular, un-
predictable behavior in deterministic, dissipative, and nonlinear dyna-
mical systems such as the atmosphere, as well as the existence of
strange attractors, which display high sensitivity to initial conditions is
currently well known (Zeng et al., 1993). However, the implications of
this chaotic behavior on the topological characteristics of the PDF still
remain open. Indeed, even in systems without the aperiodic chaotic
behavior, the characteristics of the corresponding PDF may be complex.
These aspects are clearly scale dependent. At very small scales, turbu-
lence is the most critical factor in limiting the atmospheric predict-
ability, specially in the convective scale, whereas chaos has only a
secondary role. In particular, in the fully turbulent regime of convective
scales, the intrinsic characteristics of the flow limit the predictability
more critically than errors in the initial conditions, which can be ulti-
mately reduced (Yano et al., 2018).

The true dynamics of the atmosphere is described by the Navier-
Stokes equations, which are approximated with ordinary differential
equations in a finite dimension space. The high dimensionality of this
space severely restrict the applicability of the LE for operational
weather and climate applications. In a pioneering work exploring the
solutions of the LE, Epstein (1969) computed the first and second mo-
ments of the PDF by integrating the stochastic dynamic equations
(SDE). These equations describe the time evolution of the PDF mo-
ments, and can be derived from the prognostic equations of the dyna-
mical system. However, the artificial requirement for a closure as-
sumption and its computational cost are two intrinsic limitations of this
method. Further work on SDE was done by other authors, such as
Pitcher (1977), who integrated these equations for a barotropic model
using realistic data. Additionally, Pannekoucke et al. (2018) and
Pannekoucke and Fablet (2020) offer a recent contribution to the
characterization of the PDF moments under nonlinear dynamics in the
infinite dimensional functional space by means of a parametric ap-
proach in which the error covariance matrix is approximated by evol-
ving parameters in time and space.

On the other hand, Leith (1974) introduced ensemble forecasting
with a Monte Carlo technique, which consists in randomly sampling the
initial PDF and evolving deterministically each sample with the dyna-
mical model. For real weather and climate applications, ensemble
forecasting is the only feasible strategy to estimate the PDF of the at-
mospheric system as the solution of the LE for a such high dimensional
system is unapproachable (Molteni et al., 1996; Toth and Kalnay,
1997). Since 1992 ensemble prediction systems have been produced by
the European Centre for Medium-Range Weather Forecasts (ECMWF)
and the National Centers for Environmental Prediction (NCEP) among
other operational centers. They apply methods based on the identifi-
cation of fast growing modes (Buizza and Palmer, 1995; Toth and
Kalnay, 1993) and sampling model error usually by stochastic techni-
ques (Leutbecher et al., 2017).

In the weather and climate ensemble prediction framework, most
methods used to derive PDFs, explicitly or implicitly, assume the un-
derlying unknown forecast PDF has a locally connected support (i.e. the
set of points where the function is not 0), is smooth, correlated among
neighboring states and presents weak gradients of probability.
Nevertheless, the real topological characteristics of the PDF are un-
known, so this general assumptions may not be adequate. For instance,
the actual PDF may present strong gradients of probability with high

probability states surrounded by a low probability region in phase space
(a schematic example of this topology was described by Penrose, 1989,
and also by Ehrendorfer, 2006). In that case, computing probabilities
under the a connected PDF support assumption would render mis-
leading probabilistic forecasts for either high and low probability states.

Regarding the full solution of the LE, Ehrendorfer (1994a, 1994b)
found solutions for some low-dimensional systems. In addition,
Ehrendorfer (2006) introduces solutions of the LE which display non-
linear features as time progresses. In more recent works, Yano and
Ouchtar (2017) solved the LE for a simple and low dimensional con-
vective system and Garret (2019) applies the LE to obtain the size
distribution of precipitating particles.

This study is framed in the context of geophysical systems in which
a numerical model containing the dynamical equations and the physics
parametrization is used and only ensemble forecasting techniques can
be used to estimate the PDF of the system due to the extremely high
number of degrees of freedom of the system. The purpose of this work is
to explore the topological characteristics of Liouville solutions and re-
port on topological features present in low complexity geophysical
systems which challenge current uses and interpretations of ensemble
prediction systems. Special emphasis is put onto solutions of the LE
presenting complex support topologies due to its implications for en-
semble forecasting. This study extends the analysis of Ehrendorfer
(1994b, 2006), exploring the implications for ensemble prediction
systems of solutions of the LE obtained for simplified models.

The rest of the paper is organized as follows. Section 2 presents the
general solution of the LE, in Sections 3 and 4 an analytical solution of
the LE is obtained for simplified cases of the shallow water and baro-
tropic models. The main conclusions are summarized in Section 5.

2. General solution of the Liouville equation

Given a dynamical system with N degrees of freedom =X Ẋ Φ( ),
where X is the system vector state, the Liouville equation for the
probability density function ρ has the following expression:
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is the divergence of the trajectories of the system in phase space.
LE is a continuity equation for probability in phase space, equiva-

lent to mass continuity equation in physical space. The PDF ρ must also
satisfy the following conditions:

≥ρ 0,

∫ = ∀ρ t d tX X( , ) 1 . (2)

The Liouville solutions remain normalized as long as the initial ρ0 is
normalized (e.g. Ehrendorfer, 1994a).

A general solution of the LE can be found by using the method of
characteristics (Zwillinger, 1989). See Appendix A for details of the
derivation of the following general solution for the LE:

∫= − ′ ′ ′( )α αρ t ρ χ t t dtX X( , ) ( ) exp ( ( , ), ) ,
t

0 0 (3)

where α is the state vector at t = 0 that takes the system to state X at
time t.

ρ0 is the initial PDF evaluated at state α. In order to evaluate ρ0, α
must be expressed in terms of X (i.e. α(X, t)). In other words, the tra-
jectory connecting states α and X must be computed. The trajectory can
be calculated analytically when both the analytical solution of the dy-
namical system =X Ẋ Φ( ) (i.e. X(α, t)) can be derived, and this solution
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can be inverted. To put it another way, the computation of ρ0(α) in-
volves the computation of backward trajectories which connect state X
at time t with the corresponding state α at t = 0.

The integral in Eq. (3) depends on the divergence in phase space χ.
When no divergence occurs in phase space, the integral equals 0 and the

solution for ρ reduces to the first term. However, in general the integral
of the second term must usually be computed numerically, although for
some simple systems an analytical expression exists.

Therefore, the possibility to solve the LE analytically, even having a
general expression for ρ is restricted to simplified dynamical systems

Fig. 1. Cross-sections of the PDF ρ in the U1-H plane for the value of A with maximum probability at: a) t = 0, b) t = π/12, c) t = π/6 d) t = π/4, e) t = 3π/4, f) t =
π, g) t = 5π/4 and h) t = 7π/4. Note the different scales for each time step.
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which have analytical solution. Nevertheless, Eq. (3) provides an ad-
ditional method to solve the LE numerically by computing a set of
forward trajectories in phase space. In particular, the integration of the
dynamical system connects α and X. According to the general solution,
ρ at time t equals ρ0(α) at time 0 in a non-divergent system in phase
space.

3. Solution of the Liouville equation for a simplified shallow water
equations system

The general solution of the LE is applied to a special case of the
shallow water equations with the effect of the Earth rotation over an
arbitrary domain:

⎜ ⎟

− = − ∂
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+ = − ∂
∂
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(4)

where u = ∂tx and v = ∂ty are the x, y velocity components, h is the
depth, f is the Coriolis parameter, g is gravity and D/
Dt = ∂t + u∂x + v∂y. A solution quadratic in x and y for h and linear for
u and v satisfies the system (4).

= + + + + +
= + +
= + +

h Ax Bxy Cy Dx Ey H
u U U x U y
v V V x V y

2 2 2 ,
,

,

2 2

0 1 2

0 1 2 (5)

where all coefficients (capital letters) are time dependent. Cushman-
Roisin et al. (1985) and Cushman-Roisin (1987) apply this solution to
model oceanic warm-core rings. In order to have all terms with the
same order of magnitude, the variables are scaled by a reference depth,
Href, a velocity scale, gHref , a space scale, gH f/ref and a time scale 1/f.
All coefficients are dimensionless with this scaling. We analyze this
solution of the shallow water equations as it allows to derive an exact
solution for the LE after some simplifications (see Appendix B for
mathematical details).

The analytical solution of the LE for this system after some simpli-
fications is the following:
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where ρ0 is the probability density function at t = 0, which is assumed
to be known. The second term of the solution corresponds to the in-
tegral of the divergence in phase space χ, which can be computed
analytically for this simple system. In order to obtain an explicit solu-
tion for ρ at time t and any phase space point U1, A, H, the solution of
the system at time t depending on the initial conditions U1

0, A0, H0 must
be inverted (see Appendix B). In this case, this procedure can be done
analytically, which yields an expression for the initial condition that
takes the system to state (U1, A, H) at time t:
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As an illustrative example, we take a three dimensional Gaussian
distribution as initial PDF. The distribution is centered at point
(μU1

= 0.25, μA = − 0.01, μH = 1) and standard deviations are:
σU1

= 0.05, σA = 0.002, σH = 0.1.

3.1. Results

The evolution of the system, solved analytically, is analyzed by re-
presenting the probability at each gridbox, calculated from ρ(t), and the
corresponding ΔV in phase space (ΔV = ΔU1ΔAΔH). At t = 0, ρ is a
three dimensional Gaussian distribution centered at (μU1

, μA, μH)
(Fig. 1a). As time passes, the distribution moves through phase space
maintaining the initial connected nature of the PDF and changing its
shape and support due to the action of phase space divergence (Fig. 1).
Since U1, A and H are periodic and the periodicity is the same for all
states in the initial condition, ρ is also periodic, so ρ(2πn) = ρ0 for any
integer n. With regard to the predictability of this simple dynamical
system, besides its periodicity, the high probable states remain con-
nected at all times, its predictability will be large, and conventional
discrete ensemble forecasts would be adequate to cope with its un-
certainty. Additionally, improved predictability occurs at the beginning
of the evolution due to a convergence phase. Indeed, uncertainty is not
always a growing function in time. This feature was also pointed out by
Yano and Ouchtar (2017).

The evolution of this system in physical space shows an oscillation
between a wide shallow vortex and a small deep vortex. The maximum
depth of the vortex is represented by H0 and the radius R by −H A/ .
The oscillation in the expected value of the depth and radius, as well as
their uncertainty is shown in Fig. 2. The uncertainty of coefficients A
(not shown) and H is larger in the last part of the period (Fig. 2a), which
is consistent with the evolution of ρ (Fig. 1). Larger uncertainty in the
state variables is associated with divergent phase space trajectories.
However, the uncertainty of quantities such as R derived from state
variables (Fig. 2b) does not satisfy the same relation with divergence in
phase space as it is greater during the first part of the period, when
trajectories in phase space are convergent.

4. Solution of the Liouville equation for a simplified barotropic
model

4.1. Solution of the equation

An additional system which admits an analytical solution of the LE
and has some degree of geophysical realism is a special solution of the
barotropic vorticity equation:
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where ψ is the streamfunction and β = df/dy with f the Coriolis para-
meter.

We consider an extension of the solution proposed by Lorenz
(1960), introducing a linear variation of the Coriolis parameter with
latitude (e.g. a β-plane solution), also used by Paegle and Robl (1977),
which consists in a highly truncated Fourier series expansion for the
Laplacian of the streamfunction with three time dependent amplitudes
and phase angles that depend linearly on time:

∇
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Substituting (9) into (8) and equating the terms with the same tri-
gonometric function yields:

=
=
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The equations in system (10) are dimensionless and the time unit is
arbitrary as the topology of the Liouville solution is not sensitive to
these dimensions. The evolution in phase space under the dynamics of
this system can be inspected before solving the differential equations.
The three equations of the system can be expressed as
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Taking the first equality yields
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which is integrable. With an analogous procedure for the other two
equalities and integrating we obtain the following solutions:
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where K12, K13 and K23 are constants of integration. Absolute value is
used to make the sign of the coefficients C1, C2, C3 explicit. In the X1-X2

and X2-X3 planes the orbits are ellipses, whereas in the X1-X3 plane the
curve is a hyperbola (Fig. 3). The result of this development is obtained
assuming that X1, X2 and X3 are not 0. When Xi, i=1, 2 or 3 is 0, the
trajectory changes its direction in a plane perpendicular to Xi. This can
be checked in the dynamical system, when Xi changes its sign, Xj̇, j ≠ i
also does and thus the direction of the trajectory is reversed.

The dynamical system (10) has analytical solution given by:
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with 0 ≤ k02 ≤ 1, where dn, sn and cn are the Jacobi elliptic functions.
If β = 0 then γ = 0 and τ becomes t. The coefficients X1

∗, X2
∗, X3

∗, h, ϕ
and k02 of this solution depend on the initial conditions X10, X20 and
X30:
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The solutions of X1, X2 and X3 are periodic with periods 2κ/h for X1

and 4κ/h for X2 and X3, with

∫=
−

κ
dφ

k φ1 sin
.

0
0
2 2

π
2

Given that k02 depends on the initial conditions, the value of κ and
thus the period of the solutions of the dynamical system (10) has a
dependence on the initial conditions as well.

Since Xk̇, k = 1,2,3 are independent of Xk, the χ term in Eq. (1) is
zero, and thus the non-divergent solution of the LE is obtained (i.e.
ρ(X, t) = ρ(α)):

=ρ X X X t ρ X X X X t X X X X t X X X X t( , , , ) ( ( , , , ), ( , , , ), ( , , , )).1 2 3 0 10 1 2 3 20 1 2 3 30 1 2 3

(15)

An explicit analytical solution for the LE requires to have an explicit

Fig. 2. Evolution of the expected value of a) maximum depth and b) radius of the vortex during one period. The values within one standard deviation from the
expected value are shaded in grey.
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expression for Xk0, k= 1,2,3, which is the initial state (α in Eq. (3)) that
takes the system to state X at time t. Due to the time invariance of
system (10), the initial condition can be expressed in terms of the state
at time t by using the functions in (13) and changing Xk0 by Xk and t by -
t (Ehrendorfer, 1994b). Note that, in strict sense, this solution is not
purely analytical as the Jacobi elliptic functions must are computed

numerically by using the Python SciPy package.
As for the previous case, a three dimensional Gaussian distribution

is taken as initial ρ0:

Fig. 3. Projection of individual trajectories on a), b) X1, X2, c), d) X1, X3, e) f) X2, X3 planes for two different initial conditions: X1 = 0.12, X2 = 0.24, X3 = 0.1 (a, c, e)
and X1 = 0.5, X2 = 0.7, X3 = 0.7 (b, d, f) with δ = 2.
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where K is a normalization constant, μk are the expected values in the Xk

directions and σ is the standard deviation, taken equal for all three state
variables.

4.2. Solution with no beta effect

The solution for the system with constant Coriolis effect (i.e. β = 0)

has three degrees of freedom, and the first initial ρ considered (i.e. ρ1)
has μ1 = 0.12, μ2 = 0.24, μ3 = 0.1 and σ = 0.01. At t = 0, ρ is a three
dimensional Gaussian distribution centered at X0 (i.e., μ1,μ2,μ3)
(Fig. 4a,b,c). For β= 0 and δ= 2 (C1 =−0.1, C2 = 1.6, C3=− 0.75),
as time passes, this initial distribution evolves into a undulatory ring,
with an elliptic orbit in the X2-X3 plane as found in Eq. (12). In the X1-
X2 and X1-X3 planes the ellipse and the hyperbola of Eq. (12) are not
complete due to the above mentioned change of direction when X2 or
X3 are 0. (Fig. 4). Note that the distribution span in the X1 direction is
an order of magnitude lower in X1 than in X2 and X3. This PDF evolves
creating an ever increasing number of high probability threads

Fig. 4. Maximum value of probability along X1 (a, d, g, j), X2 (b, e, h, k) and X3 (c, f, i, l) for β=0, δ= 2, μ1 = 0.12, μ2 = 0.24, μ3 = 0 and σ=0.01 at t = 0 (a, b, c),
t = 100 (d, e, f), t = 500 (g, h, i) and t = 5000 (j, k, l).
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spanning in the 3 dimensions, surrounded by low probability states.
This generates increasingly strong gradients of probability in smaller
and smaller regions.

Despite the fact that each Xk is periodic, ρ(X, t) is not because per-
iods are different for each initial condition as they depend on para-
meters h and k02 (Eq. (14)), which in turn depend on X0. Given a point
in phase space, Xp, ρ(Xp) is periodic with period 4κ(Xp)/h(Xp). A dif-
ferent point Xq has a different period, so the full probability density
function is not periodic. After some time, trajectories initiated from
neighboring points evolve into distant points. Conversely, initially
distant states can evolve towards the same phase space region. Never-
theless, the distribution of periods in phase space (Fig. 5) is continuous,
so that the continuity between high probability states is not broken with
time. In other words, high probability states which are initially con-
nected remain connected as the system evolves, but the distance be-
tween these states increases with time, while the distance between
some high and low probability states can decrease and become neigh-
bors at specific times (Fig. 6). A segment of high probability states
stretches during his evolution under system (10) increasing the distance
between these high probability states. Simultaneously, a segment of low
probable states evolves analogously, so that filaments of high and low
probability are mixed (Fig. 7). This stretching effect produced by this
linear system resembles the stretching and folding of chaotic systems. The
folding process does not occur in this system as the periodicity of the
solutions already bounds the support to a limited region. The X1 di-
rection presents the highest rate of change of the period (Fig. 5b) and
also the highest gradients of probability (Fig. 4e,f,h,i,k,l), which en-
hances the previously described effect for small variations of the initial
condition in this direction. This proximity between high and low
probability states generated by the evolution of dynamical system
produces strong gradients in the resulting PDF, rendering the highly
variable distribution observed in Fig. 4. The filamentary topology of the
solution is better illustrated considering a plane perpendicular to tra-
jectories such as the plane X2=0 (Fig. 8). For short times, only a thick
filament crosses the plane. As time evolves, the filament stretches and
due to the different periodicities of each state, regions of appreciable
probability density have low probability states in between. Bear in
mind that all initial states which belong to a curve with high probability
density states on its extremes remain connected under the system
evolution, but the distance between extremes increases due to the
stretching effect, which renders on the one hand, a reduction of the
curve section and on the other hand, the possibility that the same curve
crosses a perpendicular plane more than once, as the set of possible are

bounded by the system dynamics and thus, the longitude of the curve
can only be increased if the filament makes various revolutions.

The presence of these high gradients of probability reveals a serious
predictability challenge for this system: usual probability forecasts de-
rived from ensemble prediction systems would artificially assign large
values of probability density to marginally probable states. As an il-
lustrative example of this situation applied to the previously described
system, we consider the probability p of specific events, characterized
by a volume Ω in phase space. For different times, the volume in which
p is computed is chosen so that it is centered around the maximum
value of ρ. The probability p is computed as follows:

∫=p ρ dX dX dX .
Ω 1 2 3 (17)

The probability is also computed for a smoothed PDF, computed
applying a Gaussian smoothing filter with σ = 2 to assess the impact of
neglecting the filamentary topology of the actual PDF. The ratio be-
tween the probability computed from the smoothed PDF, psm and from
the real PDF, p as a function of the volume considered for different
times shows underestimations of probabilities due to an incorrect as-
signment of lower probabilities to states in Ω, which must be com-
pensated by higher probabilities outside the region considered (Fig. 9).
For larger volumes, psm converges to p, due to the filtering out effect of
the small scale variability involved in the averaging of Eq. (16). The
exact same effect is observed for large times: given a volume size in
phase space and a tolerable accuracy error for the probabilistic forecast,
there exist a time after which the stretching of the solution renders psm
acceptable. Before that time, psm is strongly affected by the scale of the
PDF variability. Therefore, the error in the estimation of probability
depends on the relation of the scale of the variability of the PDF (i.e. the
volume of the high and low probability filaments) and the user's tol-
erance range of the event whose probability is computed (i.e. the vo-
lume Ω considered). If the scale of the phase space volume is of the
same order than the scale of the filaments, probability computations are
strongly affected. Conversely, if the scale of interest is larger than the
scale of the variability of the PDF and the distribution of high and low
probable states is uniform, the presence of probability gradients in the
PDF has no influence on the resulting probability forecasts. In this
system, the scale of the filaments reduces with time, rendering more
accurate probabilities for small volumes and large times. The transla-
tion of the previous example into a real meteorological application
would imply that a specific temperature range (e.g. T = [10,11] °C),
could include negligible probability states in the forecast. However, if

Fig. 5. Spatial distribution of periods of the solution of the highly truncated barotropic model Eq. (10) in a) X2-X3 plane, X1=0.12 and b) X1-X2 plane, X3=0.1.
Dashed contour encloses the region where initial probability densities are higher than 1% of the maximum probability density.
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two ensemble members predicted values of e.g. 10 and 11 °C, typical
postprocessing tools would assign high probabilities to all states in the
range T ∈ [10,11] °C. Hence, ignoring the potential highly variable
character of the actual PDF would render incorrect probabilistic fore-
casts of T ∈ [10,11] °C, assigning artificially high probabilities to this
range. Eventually, in a filamentary PDF topology with filament scale
decreasing with time, this effect would not significantly affect the cal-
culation of probability of T ∈ [10,11] °C as underestimations and
overestimations of probability density could be compensated as the
scale of high and low probability density filaments decrease with time.

An alternative initial condition for ρ (i.e. ρ2) with μ1 = 0.5,
μ2 = 0.7, μ3 = 0.7 and the same value of σ renders a similar evolution
for ρ2 (Fig. 10) to that depicted in Fig. 4 for ρ1. The initial probability
density function is formed by spherical shells of constant probability
density (Fig. 10a) that evolve into an ellipse in the X2-X3 plane centered
close to the point (μ1,0,0) displaying high gradients of probability
(Fig. 10d). Nevertheless, with this initial condition the spread along X2

and X3 is larger and the blend of high and low probable states arises at
earlier times so that it can be seen even at t=50 (Fig. 10b). The dif-
ference between ρ2 and ρ1 in terms of Eq. (12) is the value of the
constants K12, K13 and K23, which are associated to each individual
trajectory in phase space.

These solutions depend on an additional parameter δ, which is the
ratio between the wavenumber in the two spatial directions (Eq. (11)).

To study its effect on the solution for the probability density function,
the value of δ is changed to 50 (C1 = −8⋅10−6, C2 = 49.98, C3 =
−24.99). For this value of δ (Fig. 11), in the X2-X3 plane the effect of
the different periods of the solution, which produces a highly variable
PDF (Fig. 4), is reduced but it is increased in the X1 direction producing
extremely high gradients of the PDF in this direction (Fig. 11). Hence,
initially neighboring states in the X1 direction separate much faster than
for δ = 2. In this case, ≈X ̇ 01 , so that state evolution is mainly two-
dimensional and different for each X2 − X3 plane. The change in δ
modifies constants C1, C2 and C3 (Eq. (11)), rendering an evolution with
X1 approximately constant and the elliptical trajectory in the X2-X3

plane.

4.3. Impact of the beta effect

When β is not zero, the argument of the Jacobi elliptic functions in
(13) is periodic in time. Unlike the solution with no β effect, not only Xk,
but also ρ is periodic due to the sinus term, not present in the β = 0
solutions. A solution with high gradients of probability is still obtained
for high values in the argument of the Jacobi elliptic functions (Eq.
(13)). The β effect produces periodicity in the argument of the Jacobi
elliptic functions, conditioning the high variability of the PDF to the
period of τ (Eq. (13)), which is given by 2π/γ. For small values of β of O
(10−11), the impact of the β effect on the probability density function is

Fig. 6. States with probabilities> 80% of probability maximum (blue) and states with probability< 10−3 of the probability maximum (red) in a region surrounding
the probability maximum at a) t = 100, b) t = 500 and c) t = 5000. Projections along the three two-dimensional plains are provided as well.
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noted for times of the order of the period of τ. For short times compared
to the period of τ, a PDF with high gradients of probability is obtained.
However, because of the periodicity of the argument of the Jacobi el-
liptic functions, at t = nπ/γ, the sinus term vanishes and ρ returns to its
initial form ρ0 (not shown).

For higher values of β, the period of ρ is shorter, and for large en-
ough values, such as β = 2.5 ⋅ 10−7, the spiral obtained for the β = 0

solution does not form and ρ is rather smooth for all times (Fig. 12).
High variability is not produced in this case because the period of ρ is
shorter than the time required to form the distribution with high gra-
dients of probability.

The different choices of parameters and initial conditions reveal that
the characteristic of the Liouville solution for this simplified system are
fairly sensitive to the model parameters. The direction of the highest

Fig. 7. Time evolution of a segment of high probable states (X1 = [0.1 − 0.14], X2 = 0.24, X3 = 0.1; in blue) and low probable states (X1 = [0.1 − 0.14],
X2 = − 0.24, X3 = 0.1; in red) and projections along the three two-dimensional plains: a) t = 0, b) t = 100, c) t = 250, d) t = 500, e) t = 1000, f) t = 5000.
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variability of probability density changes with the ratio between wa-
venumber in x and y directions, δ, obtaining higher gradients of prob-
ability in the X1 direction for higher values of δ. The β-effect controls
the period of the full PDF obtaining a periodic solution when this effect
is considered. On the other hand, the sensitivity of the displayed
characteristics to the initial condition is low.

4.4. Solution in physical space

For the sake of a better understanding of the implications of the
solution in physical space, the characteristics in physical space of states
with high probability are investigated in detail for the β = 0, δ = 2
case. States with X3 close to zero present streamfunctions which are
symmetric with respect to maxima and minima, while increasing X2

Fig. 8. Normalized values of probability density (ρmax=1) on plane X2=0 for t = 85 (a, b), t = 200 (c, d), t = 500 (e, f) and t = 2000 (g,h). Panels b, d, f and g
display an extended range of X1.
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generates streamfunctions with sharper and narrower maxima and
minima. For a given X2, the effect of changing X3 is the rotation of the
symmetry axis. For X3 = 0, this axis is parallel to y axis. X1 controls
wave amplitude.

An approximation to the mean and standard deviation of the coef-
ficients is computed for different times to associate the shape of the
probability density function to uncertainties in physical space. At t = 0
(Fig. 13), with the same spread for all three coefficients, the spread of
X1 translates onto larger spread of the streamfunction field, whereas the
spread in X2 and X3 causes only minor changes on the waves at maxima
and minima, as well as in the space in between, respectively. However,
for t> 0, the spread in X1 remains approximately constant while the
spread in X2 and X3 increases. This spread of X2 and X3 displays fields
which are very different from the mean. Remarkably, the mean is a
state roughly at the center of the spiral (Fig. 4) with a very low value of
ρ.

The reflect of uncertainty in X1, X2 and X3 in physical space is as-
sessed by plotting various states with high probability at t = 100
(Fig. 14). At the time the ring is forming (Fig. 4b), uncertainties in X2

and X3 are large because points with high values of ρ are found for very
different values of X2 and X3 and consequently, the corresponding
streamfunctions are also very different. The main differences between
them are the position of maxima and minima and the streamline dis-
tribution. Points with the highest values of X2 and with X3 close to zero
have closed streamlines in the central part of the depicted domain in the
y direction and lines of constant streamfunction lay symmetric with
respect to the maxima and minima (Fig. 14b). The value of X3 modifies
the orientation of the closed streamlines. For larger values of ∣X3∣, these
closed streamlines are more elongated and the axis of symmetry does
not cross maxima and minima (Fig. 14a, c, d). For small ∣X2∣, no closed
streamlines (Fig. 14e) emerge.

For t = 5000, with the filamented distribution well formed
(Fig. 4d), we investigate in detail the state of the system for large and
small values of X2 and X3 (Fig. 15). Fields with X3 close to zero and
varying X2 (Fig. 15a and b) or vice versa (Fig. 15c and d) have different
locations for maxima and minima. The difference between the two
couples of fields is the shape of streamlines with the emergence of
closed streamlines in the first couple.

Unlike X2 and X3, the most probable values of X1 are close to the
initial X1 and the spread is small. Despite the remarkable differences in
physical space between states with high probability, the evolution of

system (10) only gives rise to a few number of streamfunctions with
specific combinations of position, amplitudes and orientations.
Although states with very different characteristics have high prob-
ability, some other regions of phase space are unreachable for this
combination of system dynamics and initial condition.

5. Summary and discussion

The Liouville equation has been solved analytically for some low
complexity systems by using the general solution obtained with the
method of characteristics. The analytical solution describes the evolu-
tion of the PDF of a dynamical system generated by an imperfect
knowledge of the initial conditions. The different examples considered
in this study exhibit interesting characteristics.

The PDF evolution for the shallow water solution illustrates the
effect of divergence (convergence) in phase space trajectories, which
leads to a decrease (increase) in predictability. As one might intuitively
expect, high probable states for the shallow water system remain
compact for all times, so that a discrete sampling of the distribution
function in phase space (i.e. ensemble of evolutions) will render a sa-
tisfactorily precise representation of the PDF evolution.

More striking solutions are obtained for the barotropic model. The
Liouville solution for this system displays a PDF with high gradients of
probability. Although individual trajectories are periodic in phase
space, the full evolution of the PDF is more complex, rendering dis-
tributions with highly probable states nearby low probability states.
This would provide misleading interpretation of finite-size ensemble
predictions as high probability regions are separated by states with very
low probability. In the context of ensemble prediction systems, and
under the ever-present constrain of limited availability of computa-
tional resources, the sampling strategy of the initial PDF targets highly
probable states only. However, standard postprocessing and inter-
pretations of ensembles would assume a smooth underlying distribution
in which states in regions between ensemble members are also prob-
able, which would be misleading if the actual PDF presented high
gradients of probability. This effect worsens when the high variability is
not uniform across the PDF, so that its support combines smooth and
connected regions of high probability with others with high gradients of
probability. The impact of this effect is critical when the scale of the
event of interest is of the same order than the regions in phase space
with high and low probability. On the contrary, the presence of low
probability regions embedded in large volumes of interest is not pro-
blematic because underestimations of high probabilities are compen-
sated by overestimations of low probabilities. The cases which the scale
of an event of interest is of the same order of the variability of the PDF
would pose fundamental challenges on current ensemble prediction
systems as their common interpretations are based on the hypothesis of
smooth forecast PDF. In this context, this misconception would alter
probabilistic forecasts as probabilities of unlikely states would be
overestimated at the expense of surrounding highly probable states.

A further important feature of the solution for the analytical baro-
tropic case is its dependence on structural parameters δ and β. The
former, which is the ratio between wave numbers in x and y, affects the
gradients of the solution, producing a solution with higher variability in
one of the phase space directions for higher values of δ. Conversely, β,
which accounts for a linear variation of the Coriolis parameter, gen-
erates a periodic PDF solution when is different from zero, and a con-
nected support PDF for high β values. This evidences that PDF evolu-
tions can display multiple topological characteristics depending on the
governing dynamical systems.

The extension of this study to explore the features of the support for
more realistic systems with larger number of degrees of freedom (e.g.
operational or research weather models) is an open question as it re-
quires unforeseeable amounts of computational resources. Even for
lower complexity models, the system dimension is excessively high to
apply the Liouville formalism without making significant

Fig. 9. Ratio between probabilities computed from a smoothed PDF (psm) and
from the actual PDF (p) over a range of volumes in phase space centered at the
maximum value of ρ for t = 50 (solid), t = 100 (dashed), t = 250 (dotted) and
t = 500 (dash-dotted).
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approximations to reduce the dimensionality of the system. Admittedly,
properties identified in simplified systems may not be present in real
world applications. Indeed, diffusive processes in more complex sys-
tems may produce smoother PDFs. In any case, current limitations to
solve the LE prevent these issues to be thoroughly addressed.
Furthermore, the formalism described in Section 2 does not apply to the
infinite partial differential equations problems, but to the discretized
finite dimension version system, which is the approximation to the true
dynamics considered by weather and climate prediction models.

Regardless of the above comments, the first quantitative evidence of
high variability in the solutions of the LE, described and characterized
in this study, poses a fundamental challenge on current probabilistic

geophysical forecasting systems as it compromises the hypothesis of
compactness and smoothness assumed by most current ensemble in-
terpretation and postprocessing tools. The identification of these char-
acteristics in probability distribution functions of realistic geophysical
systems paves the ground towards more precise, accurate and valuable
forecasts.
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Fig. 10. As in Fig. 4 for ρ2 with μ1 = 0.5, μ2 = 0.7, μ3 = 0.7 at a) t = 0, b) t = 50, c) t = 500 and d) t = 5000.
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Appendix A. Solution of the Liouville equation by the method of characteristics

LE (1) is a hyperbolic partial differential equation, whose general form is the following:

+ + …+ =a u u a u u a u u b ux x x x( , ) ( , ) ( , ) ( , ),x x n xn1 1 2 2 (A.1)

where subscripts denote differentiation with respect to that variable. This kind of equations can be solved with the method of characteristics.
Differentiating u(x) with respect to the variable s yields:

= ∂
∂

+ ∂
∂

+ …+ ∂
∂

du
ds

x
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u x
s

u x
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1

1
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2 (A.2)

So that, defining:

∂
∂

=x
s

a ux( , ),k
k (A.3)

then:

Fig. 11. As in Fig. 4 with δ = 50 at a) t = 0, b) t = 50, c) t = 500 and d) t = 5000.
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=du
ds

b ux( , ).
(A.4)

The solution of Eq. (A.1) can be found by solving Eqs. (A.3) and (A.4). The initial conditions in s necessary to obtain this solution come from the
initial condition of Eq. (A.1), which is given by the general form f(x,u) = 0. This surface is taken as s = 0. If x and u depend on {s, t1, t2,…tn},
variables {t1, t2,…tn} can be used to parametrize the initial conditions:

= = …
= = …

…
= = …
= = …

x s h t t t
x s h t t t

x s h t t t
u s v t t t

( 0) ( , , , ),
( 0) ( , , , ),

( 0) ( , , , ),
( 0) ( , , , ).

n
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n n n

n

1 1 1 2

2 2 1 2

1 2

1 2 (A.5)

The LE with the initial condition ρ(X, t = 0) = ρ0(X) is of the form (A.1) with at = 1, aXk = Φk, b = − χρ. In order to solve the equation, Eqs.
(A.3) and (A.4) are used and they result in the following system of equations to be solved for ρ:
∂
∂

= = =t
s

t s1 ( 0) 0, (A.6)

∂
∂

= = =X
s

X s αΦ ( 0) ,k
k k k (A.7)

= − = =
dρ
ds

χρ ρ s ρ( 0) .0 (A.8)

The solution of (A.6) is t = s, the set of Eqs. (A.7) are the equations of the dynamical system, whose solution is required to obtain an explicit
solution of Eq. (A.8). This is the result presented in Section 2:

Fig. 12. As in Fig. 4 for β = 2.5 ⋅ 10−7 at: a) t = 2nπγ−1, b) t = 2nπγ−1+50, c) t = 2nπγ−1+100, and d) t = 2nπγ−1+200 with n an integer.
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∫ ⎜= ⎛
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⎝
′ ′ ′⎞

⎠
⎟α αρ t ρ χ t t dtX X( , ) ( ) exp ( , ), ) .

t
0 0 (A.9)

Appendix B. Mathematical development of the Liouville solution for the shallow waters system

The solution of the shallow water equations quadratic in x and y and linear in u and v (Eq. (5)) is simplified by considering the relative movement
of the fluid with respect to the centre of mass of the system. The particular case of circular pulsation mode is analyzed. In this simplification, circular
symmetry is imposed so that A=C, B=0, U2=−V1 and V2=U1. Further details of this solution can be found in Cushman-Roisin et al. (1985).

Following Cushman-Roisin (1987), the solution is:
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(B.1)

where = −f γ12
2 and γ, ϕ, W and H0 are parameters to be defined by the initial conditions U1

0, V1
0, A0 and H0. These parameters have limited

ranges of application:−1 < γ < 1, 0 < W≤ f2, H0 > 0. ϕ is a phase shift in the solution determined by the initial condition time. For simplicity,
we take ϕ = 0 at t0 = 0. Furthermore, γ, W and H0 are determined by the initial conditions:

Fig. 13. Representation of mean field (black lines) and mean field plus (dashed grey lines) or minus (dotted grey lines) two standard deviations in physical space for:
a) X1, b) X2 and c) X3 at t = 0 for ρ1.
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Fig. 14. Streamlines for high probability states for ρ1 at t = 100: a) X1 = 0.11, X2 = 0.23, X3 = 0.11; b) X1 = 0.11, X2 = 0.28, X3 = −0.02; c) X1 = 0.12, X2 =
0.24, X3 = −0.11; d) X1 = 0.13, X2 = 0.16, X3 = −0.16; e) X1 = 0.14, X2 = −0.04, X3 = −0.19.
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Only three initial conditions are independent, with A0 and V1
0 not independent. We take U1

0, A0 and H0 as independent initial conditions. V1 is
substituted by its expression in terms of U1, A, H and t which yields the following system of equations:

= − −
= −
= −

U U U t
A U A
H U H

̇ 2 tan( ),
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1 1
2

1

1
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The LE is solved for system (B.3). The divergence in phase space χ is not 0 in this case, so the integral term in the solution of the LE (Eq. (3)) is not
1. Nevertheless, the integral of the divergence term:

= − −χ U t10 tan( ),1 (B.4)

can be computed analytically, which, according to the general solution (Eq. (3)) yields the following solution for the PDF of the system ρ:
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This solution is valid when t ≠ (2n + 1)π/2, n = 0,1,2, . .. At these times, according to the first equation in (), U1 is 0 for any U1
0. A and H can

take different values depending on the initial conditions according to Eq. (B.1).

Fig. 15. As in Fig. 14 for t = 5000 and states a) X1 = 0.11, X2 =−0.27, X3 = 0.04, b) X1 = 0.12, X2 = 0.27, X3 =−0.01, c) X1 = 0.13, X2 = 0.00, X3 = 0.20, d) X1

= 0.13, X2 = 0.04, X3 = −0.19.
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