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A B S T R A C T

High-impact weather events over sparse data regions with complex orography, such as the Mediterranean re-
gion, remain a challenge for numerical weather prediction. This study evaluates, for the first time, the ability of a
multiscale ensemble-based data assimilation system to reproduce a heavy precipitation episode that occurred
during the first Special Observation Period (SOP1) of the Hydrological cycle in the Mediterranean Experiment
(HyMeX). During the Intense Observation Period (IOP13) from 14 to 15 October 2012, convective maritime
activity associated with an advancing cold front affected coastal areas of southern France, Corsica and Italy. With
the main objective of improving forecasts of this weather event, a data assimilation (DA) system using the
Ensemble Kalman Filter (EnKF) algorithm is implemented. The potential impact of assimilating conventional in-
situ observations (METAR, aircrafts, buoys and rawinsondes) and single-Doppler reflectivity data to improve
numerical representation of growing convective maritime structures that will evolve towards coastal populated
areas is evaluated. Results indicate that information provided by both observation sources contribute to in-
itiation and subsequent evolution of convective structures not captured by the conventional runs. Notably, data
assimilation experiments produce the best quantitative verification scores for the short range (6–8 h) forecasts of
accumulated precipitation. Beyond 6–8 h, data assimilation experiments and those without data assimilation are
indistinguishable. Sensitivity experiments, evaluating the impact of increasing the length of the radar data as-
similation period, reveal the importance of assimilating high-frequency reflectivity data during a mid-term
period (6 h approx.) to better depict deep convective structures initiated over the sea that evolve towards po-
pulated coastal areas.

1. Introduction

During the late summer and autumn populated coastal areas in the
Mediterranean basin are frequently impacted by heavy precipitation
events that can lead to flash floods (e.g., Romero et al. (2000); Mariotti
et al. (2002); Delrieu et al. (2005); Duffourg (2010); Ricard et al.
(2012); Llasat et al. (2013)), leaving serious socio-economic impacts
(e.g., Guzzetti et al. (2005); Salvati et al. (2010)). These kind of events
are often linked to deep convection from mid-latitude cyclones or the
development of intense quasi-stationary convective systems (Ducrocq
et al. (2008); Davolio et al. (2009); Bech et al. (2011); Buzzi et al.
(2014)) which still remains a key challenge of numerical weather
forecasts (Weisman et al. (2008); Ducrocq et al. (2008); Rotunno and
Miglietta (2011); Bresson et al. (2012)). Uncertainties in the initial and
boundary conditions together with the chaotic behavior associated to
the non-linear atmospheric dynamical equations can be considered as

the major obstacle to obtain skillful forecasts. Besides, problems related
to parameterizations used to describe the physical processes involved in
the boundary layer over complex terrain and the difficulty that nu-
merical weather models have with the initiation, amplitude and loca-
tion of convection, also contributes to the inaccuracy of heavy pre-
cipitation forecasts (Barthlott and Kirshbaum (2013); Burton et al.
(2013); Hanley et al. (2015)).

The international Hydrological cycle in the Mediterranean
Experiment (HyMeX, Drobinski et al. (2014); http://www.hymex.org)
coordinates scientific efforts to better understand the Mediterranean
water cycle, and specifically its associated high impact events. During
the HyMeX program, several special observation periods gathered large
amounts of unique observations that provide a database that allows to
better understand the physical processes involved in the genesis and
posterior development of such events. During the autumn of 2012,
specifically from 5 September to 5 November, the first Special

https://doi.org/10.1016/j.atmosres.2018.10.004
Received 3 April 2018; Received in revised form 6 September 2018; Accepted 8 October 2018

⁎ Corresponding author.
E-mail address: diego.carrio@uib.es (D.S. Carrió).

Atmospheric Research 216 (2019) 186–206

Available online 11 October 2018
0169-8095/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/01698095
https://www.elsevier.com/locate/atmosres
https://doi.org/10.1016/j.atmosres.2018.10.004
http://www.hymex.org
https://doi.org/10.1016/j.atmosres.2018.10.004
mailto:diego.carrio@uib.es
https://doi.org/10.1016/j.atmosres.2018.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosres.2018.10.004&domain=pdf


Observation Period (SOP1) took place focusing on the monitoring,
modeling and analysis of heavy precipitation events, flash floods and
orographic precipitation events mostly affecting the Mediterranean
areas of Spain, Italy and France (Ducrocq et al., 2014). During SOP1
field campaign, 20 intensive observation periods (IOPs) were per-
formed, 9 of them in Italy. The observations collected and the diag-
nosed analysis achieved from the IOP experiments have provided the
basis for several studies that investigate in detail the physical me-
chanisms involved in heavy precipitation events (Barthlott et al., 2014;
Ferretti et al., 2014; Manzato et al., 2015). Most of these high impact
events were initiated and developed over large data-void regions such
as the Mediterranean Sea, where analyzed fields have larger errors due
to the inherent lack of observations. Currently, uncertainties associated
with the initial conditions are considered one of the main sources of
error in properly predicting the location and timing of potentially
dangerous convective scale storms (Wu et al., 2013). Among the entire
set of IOPs, some of them were characterized by the presence of a deep
trough over the Thyrrenian sea or by a cyclogenetic area over the Gulf
of Genoa (e.g., IOP13, IOP16c, IOP18). However, for this study, we
were interested in weather events that initiated or developed mainly
over the sea that subsequently moved towards coastal areas affecting
populated regions. Between the above-mentioned IOPs, the IOP13
(14–15 October 2012) heavy precipitation event, associated with a cold
front intrusion from southern France to central Italy, was the only one
that fulfill this requirements. This frontal system took place mainly over
the Mediterranean basin traveling eastwards favoring the development
of convective systems. For this reason, IOP13 was selected to perform
our numerical sensitivity simulations. The convective systems asso-
ciated to the IOP13 were developed and became organized inter-
mittently in different areas and times, leading to an additional difficulty
generating skillful forecasts for this event.

During the last 40 years, a variety of different data assimilation (DA)
methods (i.e., statistical procedures that combine observational data
and first-guess model state) have emerged with the main objective of
reducing the uncertainty associated with the representation of initial
condition. The data assimilation algorithm used in this study is the
ensemble Kalman filter (EnKF; Evensen (1994)), which is a Monte Carlo
approximation to the Kalman filter (Kalman, 1960). One of the main
characteristic of EnKF is the estimation of the flow-dependent back-
ground-error covariance, which allows to analyze both observed and
unobserved fields through cross-correlations (Snyder and Zhang, 2003)
derived from the ensemble, as opposed to the static ones used in most
variational data assimilation schemes (Parrish and Derber, 1992;
Courtier et al., 1994). Interestingly, ensembles initialized by an EnKF
analysis produce less biased forecasts for intense rainfall episodes
(Schumacher and Clark, 2014). Several studies have demonstrated the
ability of EnKF for assimilating data from synoptic-scale to convective-
scale (Evensen, 1997; Houtekamer and Mitchell, 1998; Anderson and
Anderson, 1999; Hamill and Snyder, 2000; Whitaker and Hamill, 2002;
Reichle et al., 2002; Snyder and Zhang, 2003; Dowell et al., 2004;
Zhang et al., 2004;Hacker and Snyder, 2005; Tong and Xue, 2005;
Fujita et al., 2007; Snook et al., 2011; Wheatley et al., 2012; Yussouf
et al., 2013b; Carrió and Homar, 2016).

Overall, the above-mentioned DA EnKF studies deal with severe
weather events (typically tornadic supercell thunderstorms, damaging
windstorms and flash floods) taking place over flat terrain (e.g., USA
great plains). One of the greatest advantages is that National Weather
Services (NWSs) from United States provide an extensive well-covered
observational network, including observations from conventional (such
as METARs (Meteorological Aerodrome Report), mesonet, rawinsondes
or aircrafts) and operational Weather Surveillance Radar-1988
Dopplers (WSRe88Ds) that are also quality controlled. Despite most
real case studies ude background filed sextracted from global models,
which have standard observations already assimilated to correct the
environment, these studies confirm quantitatively the great importance
of assimilating reflectivity and radial velocity observations from

Doppler radars into meso- and storm-scale models to improve such
servere weather forecasts. However, it is noteworthy that EnKF DA
studies, as those aforementioned, have in general three main common
features. First, the assimilation phase is typically started when con-
vection is initiated. This is a critical disadvantage from a practical
predictability point of view, because it requires an active event. The
potential of improving the precursor environment that hosts the con-
vective initiation is not studied in detail. Second, once the last assim-
ilation cycle is finished, the typical lead time is only a few hours or even
minutes ahead. Details on how the forecast initiated from the EnKF
analysis behaves in the short-range (6-24 h) are not typically discussed.
Third, severe weather events studied emerge from an isolated con-
vective structure, such as supercells or mesoscale convective systems
(MCSs), with negligible interactions with other active systems.

The present study discusses the potentail predictability of a multi-
scale DA EnKF system in improving the short-range forecast of the high
impact IOP13 case event. Contrary to past studies, this heavy pre-
cipitation episode initiated over the sea, where a lack of in-situ ob-
servations is present, and was also influenced by high complex oro-
graphy (e.g., Alps and Pyrenees). This event was associated with a cold
front intrusion progressing over the sea. Embedded in the front, mul-
tiple convective systems emerged and dissipated while interacting
among them. This configuration hampered the generation of an accu-
rate short-range forecast. This work is devoted to investigate the ability
of an EnKF system to produce an accurate pre-convective environment
hours before the onset of deep convective activity over the sea, to im-
prove the predictability of this event. In particular, we investigate the
impact of assimilating a set of in-situ and radar observations.

The remainder of this paper is organized as follows: Section 2 in-
troduces a brief description of the heavy precipitation event using the
available observations. The multiscale ensemble design, the observation
sets ingested in the data assimilation process, and the configuration of
the EnKF system is highlighted in Section 3. Section 4 provides the
description of the experimental set-up design used in this study. Results
obtained from sensitivity experiments in the assimilation and forecast
period and their quantitative verification using several statistical scores
are discussed in Section 5. Finally, Section 6 provides a discussion of the
main results obtained and also offers suggestions for future studies.

2. Overview of the IOP13 heavy precipitation event

During the first observation period of the international HyMeX
(Hydrological cycle in the Mediterranean Experiment) project, a heavy
precipitation event took place between 14 and 15 October 2012
(IOP13). This event initially produced intense precipitation over
southern coastal areas of France, later affecting the northern and cen-
tral parts of Italy (Fig. 1). On 15 October, the Italian rain gauge network
registered an accumulated precipitation maximum of 60 mm/24 h in
central Italy, 160 mm/24 h in northeastern Italy and 120 mm/24 h in
Liguria and Tuscany. The synoptic situation was dominated by a cold
front associated with a wide upper-level trough extending from
northern France towards northern Spain (Ferretti et al., 2014). During
the night of 14 October a cold front affected the Western Mediterranean
region and during 15 October the system rapidly progressed from
France to Italy, advecting low-level moisture towards the western coast
of Italy. In the following hours of 15 October, a shallow secondary
minimum pressure system developed (coupled with a potential vorticity
anomaly aloft) in the Gulf of Genoa, and the associated frontal system
moved towards the Tyrrhenian coast, producing moist air advection
causing high instabilities and favoring deep moist convective activity.
During the evening of 15 October, the low pressure system moved
across the northern Italian peninsula, and the associated precipitation
affected the Balkan area in the morning of 16 October. A complete
overview of the synoptic situation and observational data collected
from the IOP13 event can be found in Ferretti et al. (2014) and
Barthlott and Davolio (2016).
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3. Methodology

3.1. Multiscale WRF ensemble design

Given the great influence of meso- and storm-scale processes in the
unfolding of the IOP13 impacts, a multiscale ensemble data assimila-
tion system consisting of two nested domains similar to that used by
Yussouf et al. (2015) is used. All experiments performed in this study
make use of version 3.7 of the Advanced Research Weather Research
and Forecasting Model (WRF-ARW; Skamarock et al., 2008). The parent
domain is centered over the Western Mediterranean Sea, covering
nearly the entire Europe and part of the northern Africa with a hor-
izontal grid-point spacing of 15 km (Fig. 2). The nested storm-scale
domain is centered over Genoa Gulf with a grid resolution of 3 km
(Fig. 2). This configuration allows to simulate the easterly evolution of

the cold front system and the associated convective structures that will
produce the registered heavy precipitation events. The two numerical
domains are featured with 51 vertical grid levels, from surface to the
50 hPa isobaric level. All numerical experiments are performed using
36-member ensembles, with boundary and initial conditions extracted
from the European Center of Medium Range Weather Forecasts global
Ensemble Predication System (EPS-ECMWF) at a horizontal and vertical
spectral triangular truncation of T639 L62 (~31 km horizontal grid
resolution). Despite these fileds are influenced by the routine data as-
similation meso- and storm-scale data assimilation experiments
(Isaksen et al., 2010; Bonavita et al., 2017). The EPS-ECMWF consists of
50 perturbed ensemble members plus a control ensemble member
(50 + 1) using a horizontal and vertical spectral triangular truncation
of T639 L62 (~31 km horizontal grid resolution). A Principal Compo-
nents Analysis and k-mean clustering technique is used to select the 36

Fig. 1. EUMETSAT multi-sensor precipitation estimate combined with cloud coverage and lightning distribution depicting the synoptic situation over the Western
Mediterranean region for: (a) 14 Oct 12 UTC, (b) 14 Oct 18 UTC, (c) 15 Oct 00 UTC and (d) 15 Oct 06 UTC.
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ensemble members with the largest dispersion over the entire numer-
ical domain (Garcies and Homar, 2009). To take into account the un-
certainties in the numerical model (Stensrud et al. (2000); Fujita et al.
(2007); Wheatley et al. (2012)), different combinations of physics
parameterizations are used among the members (see Table 1). The di-
versity in the physics parameterizations include two shortwave (SW)
and longwave (LW) radiation schemes [Dudhia (Dudhia, 1989) and
RRTMG (Iacono et al., 2008)], three planetary boundary layer (PBL)
schemes [Yonsei University (YSU; Hong et al., 2006), Mellor-Yamada-
Janjić (MYJ; Janjić, 1990, 1996, 2002), and Mellor-Yamada-Nakanishi-
Niino level 2.5 (MYNN2; Nakanishi and Niino, 2006, 2009)], and three
cumulus parameterizations schemes [Kain-Fritsch (KF; Kain and
Fritsch, 1993; Kain, 2004), Tiedtke (Tiedtke, 1989), and Grell-Freitas
(GF; Grell and Freitas, 2013)]. The most relevant common physic op-
tions across the ensemble members are the microphysics and the land
surface scheme. The Thompson microphysic (Thompson et al., 2004,
2008) and the Noah land surface scheme (Tewari et al., 2004) were
used for this study. The parameterization schemes activated in the
nested domain are identical to those in the parent domain except for the
cumulus parameterization which is not required in the nested domain.

3.2. Observations

The NOAA's Meteorological Assimilation Data Ingest System
(MADIS) provides a database of quality controlled1 conventional data.
Fig. 3 shows the spatial distribution of the set of observations con-
taining altimeter pressure, dewpoint, temperature and horizontal winds

from rawinsondes, buoys instruments, METARs and aircrafts that were
assimilated in both meso- and storm-scale ensembles. In addition, re-
flectivity observations from Météo-France S-band Doppler radars were
assimilated only in the storm-scale ensemble: ALERIA, located in the
Corsica island (France) and NIMES located southern France (Fig. 8a).
These data contain 5 and 9 scan angles respectively, with 5-min volume
scan time, and they are available on the official website of HyMeX at
https://www.hymex.org. With the main objective of avoiding issues
related with signal aliasing and to decorrelate observation errors, these
quality-controlled observations are objectively analyzed to a regularly
spaced 6-km horizontal grid using the Cressman Interpolation algo-
rithm (Wheatley et al., 2015; Yussouf et al., 2015). Reflectivity values
below 0 dBZ are set to 0 dBZ and are considered to indicate “no pre-
cipitation”. These preprocessed radar observations are assimilated
every 15-min. Unfortunately, no quality controlled radial velocities are
distributed from these radars, and thus the are not assimilated in this
study.

To properly assimilate reflectivity observations, DART uses an ob-
servation operator that estimates reflectivity values from each ith hy-
drometeor class by a constant ci multiplied by the 6th moment of the
size distribution (Smith Jr et al., 1975; Lin et al., 1983; Smith, 1984;
Schoenberg Ferrier, 1994; Gilmore et al., 2004; Caya, 2004):

Z c n D D dD( )e
i

i i0
6

(1)

where ci is the radar calibration coefficient, ni(D) is the size distribu-
tion, and D is the particle diameter. The size distribution of the ith
hydrometeor class is approximated by an exponential function:

=n D n D( ) exp( )i i i0 (2)

here, n0i is the intercept parameter and λ is the slope parameter of the

Fig. 2. Mesoscale and storm-scale domains used in all the numerical experiments.

1 Using the technique described on-line at https://madis.ncep.noaa.gov/
madis_qc.shtml
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size distribution. These parameters are related to the mixing ratio of the
species qi by the following expression:

=
n
qi
i i

i

0
0.25

(3)

being ρi the density of the species and ρ the air density. Thus, the as-
similation of reflectivity is associated with a mixture of hydrometeor
types in the analysis, such as rain, dry and wet graupel/hail and dry and
wet snow.

3.3. EnKF data assimilation system

In this study we use the parallel version of the Ensemble Kalman
Filter (EnKF, Kalman (1960); Kalman and Bucy (1961); Burgers et al.
(1998)) technique from the Trunk release branch (revision 9240) of the
Data Assimilation Research Testbed software system (DART; Anderson
and Collins (2007); Anderson et al. (2009)).

3.3.1. Mesoscale 1-h data assimilation
The MADIS conventional observations were ingested hourly from 00

UTC 14 October 2012 to 00 UTC 15 October 2012. This multiscale
system runs using a one-way nested configuration with the parent do-
main providing boundary conditions for the inner domain. Each as-
similation cycle, the EnKF updates the model state vector composed by
the three dimensional prognostic fields of wind velocity, perturbation
potential temperature, perturbation geopotential and perturbation

surface pressure of dry air, as well as water vapor and the following
hydrometeor fields: mixing ratio of cloud, rain, ice, snow, graupel and
the number of concentration of rain and ice. It also updates some di-
agnostic fields such as 10-m wind fields, 2-m temperature and moisture,
surface pressure and 10-cm reflectivity, which is useful to compute
diagnostics on the assimilation results.

Covariances obtained from this modest ensemble size, which are the
fundamental key of the EnKF algorithm, could suffer of significant
misrepresentations due to the generation of spurious correlations, cul-
minating in a poorer analysis (Hacker et al., 2007). The negative impact
of sampling errors, is minimized by using a covariance localization
technique (Houtekamer and Mitchell, 1998), which is based on a dis-
tance weighting function that goes to zero in distant region (Sobash and
Stensrud, 2013). For this study we use a Gaussian localization func-
tion–the fifth-order piece-wise rational function of Gaspari and Cohn
(1999)– to mitigate the negative effect due to the use of a limited en-
semble system. A half-radius of 230 km in the horizontal and a half-
radius of 4 km in the vertical are applied for the horizontal and vertical
localizations.

The use of a moderate ensemble size is associated with a reduction
in ensemble spread after each analysis cycle (Anderson and Anderson,
1999). To reduce this impact and help to maintain spread in the me-
soscale system, an adaptive inflation is applied to the prior ensemble
state for each assimilation cycle. In this study we use a mean initial
inflation value of 1.0 with 0.6 of standard deviation. Further details on
this procedure can be found in Anderson and Collins (2007) and
Anderson et al. (2009).

An additional quality control method is performed by the filter al-
gorithm where the difference between the observation and the prior
ensemble mean exceeds 3 times the square root of the sum of the prior
ensemble variance and the observation error variance. Observational
errors used in this study are analogous to table 3 in Romine et al. (2013)
with minor exceptions: METAR altimeter (1.5 hPa), marine altimeter
(1.20 hPa) and METAR and marine temperature (1.75 K).

3.3.2. Storm-scale 15-min data assimilation
In order to better simulate the timing and intensity of the deep moist

convective activity of IOP13, a storm-scale domain with 3 km hor-
izontal grid resolution centered over Genoa is used. Reflectivity ob-
servations from Doppler radars, METAR, radiosonde, aircraft and buoys
observations are assimilated every 15-min from 18 UTC 14 October
2012 to 00 UTC 15 October 2012. Radial velocities from Doppler radars
have been demonstrated in past studies very useful to improve weather
forecasts. However, these observations were not assimilated in the
present study because they were not quality controlled and presented
aliasing features together with a very noisy data. The task of performing
an efficient quality control algorithm is beyond the scope of this study.
Initial and boundary conditions for the storm-scale 15-min data as-
similation system are obtained from the hourly updated largest me-
soscale domain. The no-precipitation reflectivity observations are also
assimilated into the system to help reduce spurious convective activity
that develop in the numerical model (Tong and Xue, 2005; Dowell
et al., 2011).

The horizontal and vertical half-radius covariance localization for
reflectivity observations is set to 9 km and 3 km respectively. Additional
spread in form of random local perturbations are added to each en-
semble member's horizontal wind, temperature and water vapor where
reflectivity exceed 25 dBZ, using an additive noise technique (Dowell
and Wicker, 2009). This technique is applied once the model state is
updated by the filter algorithm and just before the ensemble is evolved
in time until the next assimilation cycle. The local perturbations have
standard deviation of 0.5 m s−1 for horizontal winds and 0.5 K for
dewpoint and temperature (Dowell et al., 2011; Yussouf et al., 2013a).
For the storm-scale data assimilation, the quality control associated
with the filter algorithm also excludes those observations which exceed
the outlier threshold mentioned in the mesoscale data assimilation

Table 1
Multi-physic parameterizations used on the WRF ensemble system presented on
this study. Here PBL, SW and LW stand for planetary boundary layer, shortwave
and longwave respectively.

Multiphysic configuration

Ensemble
members

Microphysics Cumulus PBL Land
Surface

SW/RW
radiation

1 Thompson KF YSU Noah Dudhia
2 KF YSU RRTMG
3 KF MYJ Dudhia
4 KF MYJ RRTMG
5 KF MYNN2 Dudhia
6 KF MYNN2 RRTMG
7 Thompson GF YSU Noah Dudhia
8 GF YSU RRTMG
9 GF MYJ Dudhia

10 GF MYJ RRTMG
11 GF MYNN2 Dudhia
12 GF MYNN2 RRTMG
13 Thompson Tiedke YSU Noah Dudhia
14 Tiedke YSU RRTMG
15 Tiedke MYJ Dudhia
16 Tiedke MYJ RRTMG
17 Tiedke MYNN2 Dudhia
18 KF MYNN2 RRTMG
19 Thompson KF YSU Noah Dudhia
20 KF YSU RRTMG
21 KF MYJ Dudhia
22 KF MYJ RRTMG
23 KF MYNN2 Dudhia
24 KF MYNN2 RRTMG
25 Thompson GF YSU Noah Dudhia
26 GF YSU RRTMG
27 GF MYJ Dudhia
28 GF MYJ RRTMG
29 GF MYNN2 Dudhia
30 GF MYNN2 RRTMG
31 Thompson Tiedke YSU Noah Dudhia
32 Tiedke YSU RRTMG
33 Tiedke MYJ Dudhia
34 Tiedke MYJ RRTMG
35 Tiedke MYNN2 Dudhia
36 Tiedke MYNN2 RRTMG

D.S. Carrió et al. Atmospheric Research 216 (2019) 186–206

190



section. For the reflectivity observations a standard deviation error of 5
dBZ was adopted, in line with following Wheatley et al. (2014) and
Yussouf et al. (2015).

4. Experimental design

4.1. Numerical simulation configuration

With the main purpose of assessing the added value of assimilating
conventional and Doppler radar observations in a storm-scale en-
vironment, three numerical experiments have been designed. In the
first experiment (CNTRL), conventional and radar observations were
assimilated. For the second experiment (SYN), only conventional ob-
servations were ingested into the system. Finally, in the third experi-
ment (NODA), no observations were assimilated. The intercomparison
between the experimental results will help quantify the impacts of each
observation type over the simulations of the IOP13 heavy precipitation
event.

4.1.1. CNTRL experiment
The CNTRL experiment is designed to investigate the impact of as-

similating both in-situ conventional and radar observations. Two
Doppler radar sites covering part of the maritime area provide ob-
servations during the time period of this simulation. The assimilation of
these radar observations could contribute significantly to improve the
forecasts of the initiation of convection over the sea, as well as to im-
prove the storm representation of both analyzed and short-range fore-
cast.

The experimental design consists of three phases. On the first phase,
the initial sample which is obtained from the clustering technique ap-
plied to the EPS-ECMWF (Section 3.1), is initialized at 18 UTC 13 Oc-
tober 2012 and it is forecasted 6 h forward until 00 UTC 14 October
2012 to spin-up the storm-scale domain. Then, on the second phase,
hourly conventional observations (METARs, rawinsondes, aircrafts and
buoys) were assimilated from 00 UTC 14 October to 00 UTC 15 October

2012. A rapid-update assimilation cycle (15-min) was also performed
adding reflectivity observations from 18 UTC 14 October to 00 UTC 15
October (Fig. 4 Ia). Finally, the last phase consists in advancing the
ensemble analysis, obtained through the last data assimilation cycle at
00 UTC 15 October, 24-h forward until 00 UTC 16 October.

4.1.2. SYN experiment
This experiment assesses the impact of conventional observations,

which are useful to characterize mesoscale atmospheric circulation
signatures. The SYN experiment incorporates the same three phases
that the CNTRL one, but with a slight variation in the second phase.
SYN experiment only takes into account in-situ conventional observa-
tions, as no radar observations are incorporated. An hourly data as-
similation cycle is performed from 00 UTC 14 October to 00 UTC 15
October 2012. Then, in the forecast step, the new analysis state is in-
tegrated 24-h forward (Fig. 4 Ib).

4.1.3. NODA experiment
Finally, an experiment with no data assimilation is run. This ex-

periment is a direct downscaling from the initial sample, obtained from
the EPS-ECMWF, from 00 UTC 15 October to 00 UTC 16 October 2012
(Fig. 4 Ic). The comparison between NODA, SYN and CNTRL will
highlight on the impact of the observations in each DA experiment. The
choice of 00 UTC 15 October as the initial time for NODA, which
matches the initial time for the forecast phase of CNTRL and SYN, al-
lows comparison of the predicted fields as well as the analysis from the
DA experiments. It is important to highlight that the choice of starting
the NODA experiment from the EPS-ECMWF at 00 UTC 15 October was
made intentionally to be able to transfer the conclusions obtained into
operational contexts. The main argument that supports the decision of
using the 00 UTC 15 October EPS-ECMWF analysis is the rapid error
growth at the mesoscale and microscale. The large error growth of a
free forecast in a case of active dynamics and spread convective activity
likely results in large forecast errors. In an operational framework, this
advises to use the most recent global forecast cycle available, which at

Fig. 3. Spatial distribution of conventional METARs, maritime buoys, rawinsondes and ACARs data assimilated on the multiscale system between 12 UTC on 14 Oct
and 00 UTC on 15 Oct 2012.
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the time the DA analysis is produced is the 00 UTC 15 October.

4.2. Verification scores

To quantitatively evaluate the quality of the forecasts, several ca-
tegorical and probabilistic verification scores have been used. As this
study is focused on the improvement of a high precipitation event
forecast, the verification is performed over the accumulated precipita-
tion field (mm h−1). Observational data registered by the Italian rain
gauge network was used for this purpose.

One of the most widely used verification scores in the community to
assess the forecast accuracy is the root mean squared error (RMSE). In
this study, RMSE was computed for the accumulated precipitation fields
from the three above-mentioned experiments.

The Brier score (BS; Wilks (2011)) is similar to the RMSE but for
probabilistic forecasts of an event. The Brier score is negatively or-
iented, with perfect forecasts exhibiting BS = 0. The Brier skill score
(BSS) is commonly used to compare the probabilistic forecast to a re-
ference forecast (e.g., climatology). In this study, the NODA experiment
is taken as the reference, leading to:

=BSS BS
BS

1
NODA (4)

Hence, this score will indicate whether the CNTRL and SYN ex-
periments improve upon the NODA experiment. Positive values of BSS
imply an improvement with respect to the NODA experiment.

The relative operating characteristics (ROCs, Mason (1982); Stanski
et al. (1989); Harvey Jr et al. (1992)) is considered a recommended
method by the World Meteorological Organization for indicating the
skill of a probabilistic weather forecasts. It compares the hit rate
(warning provided correctly) against the false-alarm rate (warning
provided incorrectly) for different probability thresholds. In the present
study we applied the area under the relative operating characteristics
(RAUCs, Stanski et al. (1989); Schwartz et al. (2010)) which is also a
widely used method to assess the quality of the forecasts. Perfect
forecasts render RAUC = 1.

Taylor diagrams (Taylor, 2001) are another way of proving gra-
phical verification information. These diagrams display different pat-
terns (experiment ensembles) in terms of their correlation, root mean
squared error and amplitude of their variations (standard deviations).
Taylor diagrams are useful tools to perform intercomparisons among
multiple experiments, as those performed in this study.

5. Results

We discuss in this section the most relevant aspects of the

Fig. 4. Timeline of the different multiscale experimental designs employed in this study. Configuration in section I) corresponds to the primary experiments in this
study a) CNTRL, b) SYN and c) NODA. Section II) corresponds to the experiments performed in the study of the impact of different DA period lengths in the numerical
forecast. CNTRL experiment performs a 6-h cycle of reflectivity DA, CNTRL_4h experiment performs a 4-h period of DA and CNTRL_2h experiment performs only a
cycle of 2-h of DA.
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experiments performed. First, the ability of the EnKF algorithm to fit
the model state to the observations is discussed. Second, a quantitative
verification of the short-range forecast using the above-mentioned
scores is performed with the main aim of estimating the impact of the
initial conditions obtained in the previous assimilation step.

5.1. Observation-space diagnostics

With the primary purpose of checking that the assimilation process
is performing as expected, observation-space diagnostic statistics of the
root mean squared innovation (RMSI), total ensemble spread and bias
are calculated (Dowell and Wicker, 2009; Dawson II et al., 2012;
Yussouf et al., 2013b; Wheatley et al., 2014). The RMSI gives a measure
of the overall fit of the forecasts and analysis to the observations and it
can be defined as:

= < >RMSI d2 (5)

where d = y H x( )o is the innovation, defined as the difference be-
tween observations and the interpolated mean simulated values. H is
the forward observational operator which converts the numerical
model fields (in model-space) to the equivalent observed measures (in
observation-space). H also performs the corresponding spatial inter-
polation which allows to compare the model and the observations
point-wise. The angle brackets indicate expected value over all as-
similated observations in order to quantify the impact of assimilating
observations into the system, the RMSI is computed before (prior; xf)
and after (posterior; xa) each analysis cycle. The second statistic mea-
sure is the total ensemble spread (TS) defined by Dowell and Wicker
(2009) as:

= + < >
=

TS
N

H x H x1
1

[ ( ) ( )]obs
n

N

n
2

1

2

(6)

where σobs is the observational standard deviation error assumed for
each kind of assimilated observation and N is the ensemble size (i.e.,
36). Alternatively, the bias highlights systematic errors associated with
the ensemble performance. Analyses bias has been calculated through
the mean innovation as Yussouf et al. (2015):

= < >Bias d (7)

The hourly conventional data ingested from 00 UTC 14 October to
00 UTC 15 October was firstly evaluated for every MADIS observation
type by calculating the above-mentioned statistics prior- and posterior-
to each analysis cycle, generating in this way a sawtooth-like pattern of
these diagnostics. Prior and posterior RMSI values for the entire set of
conventional observations range from ∼0.5 to 1.5 (K, hPa or m s−1)
during the assimilation period (Fig. 5). Diagnostics from the 2-m tem-
perature and the x-component of the wind show similar behavior with
the dewpoint and y-component of the wind, respectively. These errors
together with the spread show a slight growth in the early part of the
assimilation due to the spin-up effect of the data assimilation system
and afterwards they remain stable around the observational error,
which is a sign of robustness and performance of the system.

RMSI was computed during the window assimilation (from 00 UTC
14 October to 00 UTC 15 October) for all DA experiments with the aim
of showing the model error growth between assimilation steps corre-
sponding to the different experiments (Fig. 5). In general, it can be

shown that the inclusion of radar observations help reducing the RMSI
through cross-correlations, although this effect is very sensitive to the
meteorological fields. The RMSI for the 10-m wind is greater reduced
when radar observations are assimilated than the RMSI for 2-m dew-
point or temperature. The 24-h forecast verification among the different
DA experiments is also depicted in the same figure, showing that in
general, the assimilation of reflectivity observations help to reduce the
error of the above-mentioned variables (Fig. 5). It is also important to
note that the forecast error growth after all DA cycles is similar to those
during the DA cycles.

The consistency ratio (CR; Dowell et al. (2004)) diagnostic is used to
assess the consistency between the prior ensemble spread and RMSI
with the observation error:

= =
+ < >

< >
=CR TS

RMSI
H x H x

d
( )
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N
n2

2

2 1
1 1

2

2 (8)

where the total spread and RMSI are calculated over the prior states.
Thus, a consistency ratio of ∼1.0 suggests that the prior spread is a

good approximation of the forecast error for the assumed observation
error. Consistency ratios computed for the whole period of assimilation
generally fall between 0.5 and 1.5 (Fig. 6). For altimeter observations,
large values of consistency ratio are observed during the first hours of
the assimilation window, gradually decreasing as the system assimilates
new observations and until the last cycle of the assimilation window,
where proper values of consistency ratio were reached (Fig. 6a).

Diagnostic statistics were also calculated to the rapid-update (15-
min) storm-scale radar data assimilation (Fig. 7), for regions where
reflectivity exceeds 20 dBZ. Initially, before the first reflectivity as-
similation cycle, the RMSI depicts a large value of 22 dBZ, attributable
to the lack of maritime convective systems identifiable on the radar
fields. As the EnKF system cycles forward in time, these errors start
decreasing and at the end of the assimilation window the RMSI reach
approximately 3 dBZ (Fig. 7a). The BIAS is also corrected down to
around 10 dBz, similar to Dong and Xue (2013). Such high innovations
reveal the limited ability of the model to maintain the convective sys-
tems introduced by the assimilation filter. Analogous to the conven-
tional statistics results, the total spread does not depict any collapse or
divergence of the ensemble system, remaining stable most of the DA
window indicating robustness of the data assimilation design. Con-
sistency ratio for the reflectivity shows an initial growth during the
spin-up period from 0.2 to 0.5, and then remain stable for the rest of the
assimilation period (Fig. 7b). These consistency ratio values (< 1) in-
dicate that the ensemble system is underdispersive for the reflectivity
observations treated. In general, this property is a common issue in real
data assimilation studies at these scales (Aksoy et al., 2009; Snook et al.,
2011; Jung et al., 2012; Yussouf et al., 2013a; Wheatley et al., 2014).

5.2. Model-space diagnostics

A new set of initial conditions (analysis) were obtained at 00 UTC
15 October through the posterior ensemble obtained from the last data
assimilation cycle. At this time, a qualitative evaluation of the re-
flectivity fields retrieved from each experiment with the observed re-
flectivity corresponding to ALERIA and NIMES radars (Fig. 8) was
performed. CNTRL simulates a significant meso convective system
(MCS) eastern Corsica Island (see S1 pattern in Fig. 8c-d) and over the

Fig. 5. Observation-space diagnostics for 1-h assimilated conventional data during a period of 24 h on the 14 October 2012. Values for RMSI, Bias and total spread for
each DA experiments are depicted for (a) 2 m temperature, (b) 2 m dewpoint and (c) 10 m y-component of wind observations. RMSI for the forecast period is also
added. For each these observations there are an additional panel showing the total number of available observations (dashed black lines), the number of assimilated
observations (solid dark lines) and the percentage of assimilated observations (gray lines).
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Fig. 6. Consistency ratios (solid lines) calculated using the prior ensemble mean during the whole period of conventional DA on the 14 October 2012. Number of
assimilated observations (dashed lines) are also depicted. Gray areas indicate the range of consistency ratios closer to the perfect score (CR = 1).
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Gulf of Genoa (see S2 pattern in Fig. 8c–d). A direct visual inter-
comparison against SYN shows that reflectivity assimilation also con-
tributes in reducing the intensity of some convective structures offshore
southern France and removing spurious convection generated by the
model (see S3 and S4 patterns in Fig. 8b-d). On the other side, NODA
(Fig. 4a) initially does not develop reflectivity structures because it is a
cold start simulation, and some time is needed to allow the model to

generate convective structures. Thus, the assimilation of conventional
and radar observations allows to produce realistic convective structures
at the correct location. However, the intensity of some of these simu-
lated convective structures is overestimated compared to the observa-
tions (e.g., S2 pattern in Fig. 8c–d).

Conventional and radar data assimilation in the EnKF modify sub-
stantially the dynamical and thermodynamical environment

Fig. 7. As in Fig. 5 and Fig. 6, but for the 15-min radar data assimilation experiment from 18 UTC 14 October to 00 UTC 15 October 2012.
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represented by the numerical model. For this case, the assimilation of
such observations revealed a greater impact in the thermodynamic
environment (characterized by the equivalent potential temperature)
than in the dynamic fields. The impact in the thermodynamic en-
vironment linked to every type of observation assimilated, was ana-
lyzed using differences between the assimilation-experiments (CNTRL,
SYN) and the no-assimilation experiment (NODA), or the differences
between CNTRL and SYN experiments (Fig. 9). In the first instance, the
impact of assimilating both conventional and radar reflectivity ob-
servations compared with the NODA experiment (Fig. 9b) is to warm
the column of air (∼ 12 K) located between 41.56∘N/10.81∘E and
41.15∘N/11.31∘E that is related with the latent heat release from the
MCS (S1 in Fig. 8c) generated by the assimilation of reflectivity data. A
secondary warming corresponding to a smaller convective cell over
eastern Corsica island (Fig. 8c) is also present to the west of the above-
mentioned main MCS. The second main effect of assimilating re-
flectivity data (CNTRL experiment) is the modification of the cold front
system intrusion (westernmost part of the cross section). It can be
showed that the assimilation of such observations cools down (~−9 K)
the cold front system which was the main triggering mechanism of

convection of this event, and also it is moved forward to the east of the
cross section. The impact of the assimilation from conventional ob-
servations (Fig. 9c), shows that the cold front cooling was mainly due to
these observations. Finally, the comparison of the impact of assim-
ilating reflectivity versus conventional data shows that the main impact
of the reflectivity data in the thermodynamical environment is to warm
up the column for the largest MCS and warming along the convective
structure east of Corsica (Fig. 9d). Although the assimilation of ob-
servations significantly affects the thermodynamic environment,it is
also important to highlight the effect on the dynamical field, re-
presented by the wind field. The cross section of the wind shows how
the assimilation of conventional observations increases the wind along
the cold front, shifting the cold front system eastwards. Thus, the im-
pact of conventional observations is mainly to cool the atmosphere and
shift the cold front system eastwards.

A forecast initialized at 00 UTC 15 October was launched for each
experiment and one of the most notable aspects found was that the MCS
(S1 in Fig. 8c) developed eastern Corsica by the CNTRL simulation,
gradually lost intensity while it was moving towards the Italian coast
(Fig. 10). When this MCS arrived to the coast at 02 UTC 15 October, a

Fig. 8. Ensemble-mean reflectivity for (a) NODA, (b) SYN and (c) CNTRL experiments at analysis time (00 UTC 15 October 2012). The observed reflectivity field (d)
at the same time is also shown. Gray dashed circumferences depicts the influence range of the radars. Red circles corresponds to areas of interest discussed in the
manuscript. Gray line represents the location of a vertical cross section used along this study. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 9. Vertical cross section along the inner domain depicted in Fig. 8a, showing the ensemble mean equivalent potential temperature and wind for a) the NODA
experiment and also for the differences between experiments b) CNTRL-NODA, c) SYN-NODA and d) CNTRL-SYN at the analysis time (00 UTC 15 October 2012).
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mismatch between the shape and intensity of the system and the ob-
servations is clearly observed (Fig. 10c–d). At 04 UTC, the observed
MCS still remained over the Italian coast while the CNTRL simulated
reflectivity field does not produce any significant signal at the same
location. Thus, deep convective structures inserted in the numerical
model through reflectivity data assimilation rapidly decay within 4–6 h
in the forecast. As time evolves, simulated convective systems in both
SYN and CNTRL experiments become more similar to the NODA ones.
Therefore, assimilating observations does not have significant effect
after a few hours, in this case, after 6 h approximately. The inability of
the forecast model to maintain structures generated by the assimilation
filter is a well known limitation of EnKF systems, even under favourable
circumstances such as the simulation of mostly isolated well-defined
structures like cyclones, mesoscale convective systems or supercells
(e.g., Fujita et al. (2007); Kain et al. (2010); Snook et al. (2011);
Wheatley et al. (2012); Stensrud et al. (2013); Wheatley et al. (2015);
Yussouf et al. (2016)). These studies typically are focused on isolated
weather systems that rarely interact with other convective systems or
complex geographical features. In addition, most storm-scale assimila-
tion experiments in the literature benefit from using dense observa-
tional networks with excellent monitoring strategies that result in va-
luable quality controlled observational databases used in the
assimilation process. For the present study, we highlight the potential of
EnKF techniques in a region with lack of in-situ observations where
most of them are located in high complex terrain. We also show the
weaknesses of current observational systems, in the Mediterranean re-
gion, helping in the improvement of the predictability of severe
weather events that produce high economical and social losses. Better
regional initiatives to promote building quality observational databases
would help overcome the challenges that the lack of observations and
the complex geographical features pose to storm-scale data assimilation
in the Mediterranean. In addition to the inherent model difficulty in
maintaining the convective structures introduced by the data assim-
ilation system, there is another predictability challenge associated with
this kind of case study. This event was affected by multiple intermittent
convective cells associated with the evolution of the cold front that
swept the Italian peninsula during the late hours of 14 and the entire 15
October. The final analysis obtained from the EnKF contains informa-
tion of active convection before the first hours of 15 October. In spite of
the fact that conventional and radar assimilation also helps to improve
the thermodynamical and dynamical environment is not enough to
initiate new observed convection later on.

As it was mentioned in the introduction section, this event was
characterized as a heavy precipitation episode. For this reason and with
the major aim of studying the impact of assimilating the above-men-
tioned observations in the short range forecast, the 2-h accumulated
precipitation was computed for each experiment (Fig. 11). The CNTRL
simulation reveals a better agreement in the location of the maximum
amount of 2 h accumulated precipitation, compared to SYN and NODA
simulations, with the observations provided by the Italian raingauges
close to the Genoa Gulf (see O1 in Fig. 11d). SYN experiment shows a
maximum of 2 h accumulated precipitation over the Genoa Gulf but
shifted northwestwards relative to the observations. In addition, the
assimilation of reflectivity observations helps to reduce the amount of
precipitation depicted by the SYN simulation in some areas of the nu-
merical domain (e.g., O2 in Fig. 11b-c). At this time and due to its cold-
start initiation, NODA simulation was influenced by the spin-up period
depicting a precipitation field that does not correspond to the ob-
servations. At 06 UTC the NODA simulation depicts a maximum of 2 h
accumulated precipitation close to the maximum observed in northern
Italy but it is overestimated (see O3 and O5 in Fig. 11e,d). The assim-
ilation of conventional and reflectivity observations improve the loca-
tion and intensity of the 2 h accumulated precipitation forecast
(Fig. 11g) and also improve some overestimated precipitation areas
depicted by the SYN simulation (see O4 in Fig. 11f–d). Ten hours after
the forecast initiation, CNTRL simulation still has the 2 h accumulated

precipitation forecast that is closer to the observations than the SYN
and NODA experiments (Fig. 11k). Although NODA simulation depicts
with good accuracy the maximum amount of precipitation near the
Genoa Gulf, (O6 in Fig. 11f–d), it under-performs the accumulated
precipitation in O7. In addition, NODA simulation overestimates the
precipitation amount in O8 and O9. By this time, the differences be-
tween SYN and CNTRL simulations are negligible.

To quantitatively assess the impact of data assimilation on the forecast,
several categorical and probabilistic verification scores (introduced in
Section 4.2) were used for the 2-h accumulated precipitation field (Fig. 12).
First, we focused our attention at the very short range forecast (2–8 h). Over
this short-range forecast period, the RMSE, BSS and RAUC scores for the
CNTRL experiment indicate best skills, followed by the SYN and NODA
experiments respectively. This score shows that CNTRL simulation has in-
itially lower errors compared with SYN and NODA results, which depict
similar RMSE along the entire forecast period (Fig. 12a). These results are in
agreement with the differences discussed above for Fig. 11. During the first
10 h of forecast, CNTRL experiment still having the best scores in terms of
RMSE, and then the scores from all three experiments evolve essentially
together becoming indistinguishable until the end of the forecasts where the
errors range from 4 to 5 mm.

To be able to quantify the results from our simulations in terms of
the accuracy of their probabilistic forecasts, the BSS using a threshold of
10 mm and also using as reference the NODA experiment was computed
(Fig. 12b). The BSS indicates that the CNTRL probabilistic forecast
(bounded to this threshold) exhibits a strong positive impact from the
assimilation of both radar reflectivity and conventional observations
during the first 8–10 h. On the other hand, SYN results show a negative
impact of the conventional observations assimilation, contrary what
one may expect from results depicted in Fig. 11a–d. However, Fig. 11b,
shows hat the maximum accumulated precipitation pattern simulated
in the Genoa Gulf is shifted from the observations towards the north-
west of Italy, producing false alarms that penalize the forecast skill in
terms of BSS. After 10 h of the initiation of the forecast, BSS shows
similar behaviors for both CNTRL and SYN experiments. By this time
the assimilation of conventional and reflectivity observations does not
have a positive effect compared with the NODA simulation. The area
under the ROC curve is also computed to evaluate the results obtained
in terms of probabilistic forecasts (Fig. 12c). Again, CNTRL experiment
depicts the best verification scores within the first hours of simulation,
with values compressed between 0.84 and 0.86, reaffirming that the
assimilation of conventional and reflectivity observations improve the
short-range forecasts (Snook et al., 2015; Bick et al., 2016).

Finally, to complete our attempt to quantitatively measure the skill
of our experiments in terms of 2-h accumulated precipitation, the
Taylor diagram (Fig. 13) was computed at 02, 04 and 06 UTC 15 Oc-
tober. This diagram allows to analyze the accuracy of the ensemble
members, quantifying the correspondence with the observations in
terms of: Pearson correlation, RMSE and standard deviation. Results at
02 UTC show that ensemble members from the CNTRL simulation are
characterized to have the highest correlation values (0.6–0.8) and
lowest RMSE compared to the SYN and NODA experiments (Fig. 13a).
Regarding the spread of the ensemble, the CNTRL ensemble depicts the
largest standard deviations ranging from 2.4 to 5.7 mm, indicating that
the assimilation of both conventional and reflectivity observations in-
troduces extra variability to the ensemble. At this time, the NODA ex-
periment has the worst performance, with correlation ranging from 0.2
to 0.4 and standard deviations values for all the ensemble members
below the mean value associated with the observations. As the forecasts
advanced in time the three different ensemble clusters (NODA, SYN and
CNTRL) converge, becoming almost indistinguishable.

5.3. Sensitivity on the reflectivity DA period length

Reflectivity assimilation window in the CNTRL simulation was set
up to 6 h performing assimilation cycles every 15-min. With the main
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Fig. 10. Ensemble-mean reflectivity for NODA, SYN, CNTRL experiments and the associated reflectivity observations at 02 UTC (a,b,c,d), 04 UTC (e,f,g,h) and 06
UTC (i,j,k,l) on 15 October 2012.
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Fig. 11. Ensemble-mean 2-h accumulated precipitation for NODA, SYN, CNTRL experiments and the associated 2-h accumulated precipitation estimates from
raingauges observations valids at 02 UTC (a,b,c,d), 06 UTC (e,f,g,h) and 10 UTC (i,j,k,l) on 15 October 2012.

D.S. Carrió et al. Atmospheric Research 216 (2019) 186–206

201



Fig. 12. Statistical verification scores a) RMSE, b) BSS and c) RAUC used for the forecast verification of the 2-h accumulated precipitation during 15 October over the
Italian region within the inner domain of simulation.
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purpose of quantitatively assess the impact of the assimilation window
length on the short-range forecast, two additional experiments were
performed. Although the assimilation period was modified it still
having the same assimilation frequency (see Fig. 4 II). On the one hand,
the CNTRL_4h experiment assimilates reflectivity observations during
4 h, from 20 UTC 14 October to 00 UTC 15 October. And in the other
hand, CNTRL_2h experiment only assimilates observations during 2 h,
from 22 UTC 14 October to 00 UTC 15 October.

The analysis in the CNTRL_2h at 00 UTC 15 October reveals that the 2-h
accumulated precipitation field missed in locating the maximum amount of
observed precipitation, shifted northwards. This simulation results also
show signs of underestimation in the amount of precipitation near the
Genoa Gulf and northern Italy in comparison with the raingauges ob-
servations. However, when the assimilation window is elongated with two
additional hours (CNTRL_4h), errors in the location of the maximum
amount of precipitation and the underestimation values in some areas of the
numerical domain are reduced significantly. These uncertainties in the
CNTRL_2h and CNTRL_4h experiments are related with a poor representa-
tion of the northern part of the cold front system, covered by NIMES radar.
This fact reveals the key role of NIMES radar in improving the depiction of
the atmosphere state and the corresponding forecast. To evaluate quanti-
tatively this effect from the probabilistic point of view, RAUC statistics are
performed (Fig. 14). Results over the 2-h accumulated precipitation field
confirm that CNTRL_2h gives the worst RAUC score, followed by the
CNTRL_4h experiment indicating the relevance of the duration of the re-
flectivity assimilation period. These results agree with Dong and Xue (2013)
regarding the importance of assimilating reflectivity observations during
assimilation window periods longer than 2 h to obtain accurate forecasts
using the EnKF system. In addition, RMSI for the assimilation and forecast
periods are also depicted together with the other DA experiments, showing
that CNTRL_4h and CNTRL_2h are indistinguishable verifying over 2-m
temperature, dewpoint and 10-m wind (Fig. 5). However, more studies with
similar features (such as, lack of observations, development of the thun-
derstorm over the sea and influence of complex orography) need to be
performed to confirm these conclusions.

6. Synthesis and conclusions

During 14 and 15 October 2012, the HyMeX IOP13 heavy pre-
cipitation event advanced from southern coastal areas of France and
towards central and northern populated areas of Italy. This event was
associated with the intrusion of a cold front system that evolved mainly
over the Western Mediterranean sea favoring intermittent mesoscale
convective systems to develop that moved eastwards hitting the coastal
area of Italy.

One of the most relevant source of uncertainties in numerical
weather prediction is related with the predictability of first kind (Mu
et al., 2002). This work aims to explore, for the first time, the ability of
a multiscale EnKF DA to improve the predictability of severe weather
events initiated over large maritime areas affected by high complex
topography, such as the Mediterranean basin, where a lack of in-situ
observations is present. Under such data sparsity observations available
in these regions cannot be quality controlled at the same level as the
operational network used in USA National Prediction Centers and poses
a serious challenge to the prediction of Mediterranean severe weather
events initiated over the sea. With the main objective of improving the
representation of the atmosphere state and thus improving the short-
range numerical forecasts of this maritime event, several multiscale
numerical data assimilation experiments using the EnKF algorithm

Fig. 13. Taylor diagrams performed by the CNTRL (green points), SYN (blue
points) and NODA experiments (red points) for the 2-h accumulated pre-
cipitation valid at a) 02 UTC, b) 04 UTC and c) 06 UTC on 15 October 2012.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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were performed. The impact of assimilating in-situ conventional ob-
servations (ACARs, rawinsondes, METARs and maritime buoys) from
MADIS database was evaluated. The impact of assimilating such ob-
servations (SYN) could be significant due to the advection of important
synoptic/mesoscale features from coastal areas towards the sea by the
assimilation cycle. Reflectivity data from two radars, one located
southern France (NIMES) and the other in Corsica Island (ALERIA),
together with the conventional observations were also assimilated
(CNTRL). The spatial radar range of these radars covers a significant
part of the sea where the cold front was located and provides in-
formation about active convective cells, that moved towards the Italian
coast. To assess the quality of the underlying analysis fields, a numer-
ical simulation without assimilating any kind of observations was also
performed (NODA).

Results from these numerical experiments revealed that accumu-
lated precipitation fields from CNTRL run (over the first 8–10 h of the
simulation) were closer to the raingauge observations than the SYN and
NODA experiments. Close inspection of the simulated reflectivity fields
indicates that CNTRL simulation reproduced more precisely the ob-
servations of the mesoscale convective system over the sea, producing
precipitation that SYN and NODA experiments did not simulate. The
assimilation of conventional and reflectivity data also modified the
dynamical and thermodynamical environments. Equivalent potential
temperatures showed that the intensity and position of the cold front
was modified (intensifying and moving forward such system) mainly by
the conventional data assimilation effect. In contrast, reflectivity data
assimilation had the major impact in warming the portion of the at-
mosphere associated with the development of deep convection.

To quantitatively assess the accuracy of each numerical experiment,
several verification scores, such as RMSE, RAUC, BSS and Taylor diagrams,
were computed. These scores indicate that the assimilation of both con-
ventional and reflectivity observations have a major impact on the forecast,
achieving the best verification scores among the other experiments during
the first 10 h. Another important feature to highlight is the behavior of the
forecasts for the CNTRL, SYN and NODA experiments after the first 8–10 h
from the final analysis at 00 UTC. The forecasts of the three experiments

basically converge after 10 h and they become essentially indistinguishable.
Hence, the assimilation of radar and conventional observations does not
have a significant impact beyond 10 h of free forecast. This is likely due to
both the diurnal cycle minimum and the effects from our lateral boundary
conditions from the large scale model.

Finally, we investigated the impact of the data assimilation window
length on the CNTRL experiment. Two experiments were performed
reducing the reflectivity window length from 6 to 4 and 2 h. Results
showed that a 2-h window period was not enough to accurately re-
present the state of the atmosphere, mainly because during such short
time period, the model can not represent sufficiently the convective
structures responsible for the reflectivity intended to be assimilated.

In this study, the assimilation of high-resolution reflectivity ob-
servations have shown a great impact on the short-range forecast of
maritime originated intermittent deep convective cells. However, a few
number of radar instruments are located near coastal areas and they
only cover a relative small area of maritime surface. For this reason, to
further study the impact of assimilating observations to high impact
weather initiated and developed over the sea, the assimilation of ob-
servations retrieved from meteorological instruments on board sa-
tellites is left for future studies. Among the available satellite products,
we are interested in rapid-scan atmospheric motion vectors (RS-AMVs),
which provide wind vector estimates over areas not covered by other
observation means. These observations will be assimilated every 20 min
together with conventional observations. The aim of this current re-
search is to assess the impact of RS-AMVs on the predictability of
maritime severe weather events.
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