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ABSTRACT

During the spring of 2003, the Storm Prediction Center, in partnership with the National Severe Storms
Laboratory, conducted an experiment to explore the value of having operational severe weather forecasters
involved in the generation of a short-range ensemble forecasting system. The idea was to create a custom-
ized ensemble to provide guidance on the severe weather threat over the following 48 h. The forecaster was
asked to highlight structures of interest in the control run and, using an adjoint model, a set of perturbations
was obtained and used to generate a 32-member fifth-generation Pennsylvania State University–National
Center for Atmospheric Research Mesoscale Model (MM5) ensemble. The performance of this experi-
mental ensemble is objectively evaluated and compared with other available forecasts (both deterministic
and ensemble) using real-time severe weather reports and precipitation in the central and eastern parts of
the continental United States. The experimental ensemble outperforms the operational forecasts considered
in the study for episodes with moderate-to-high probability of severe weather occurrence and those with
moderate probability of heavy precipitation. On the other hand, the experimental ensemble forecasts of
low-probability severe weather and low precipitation amounts have less skill than the operational models,
arguably due to the lack of global dispersion in a system designed to target the spread over specific areas
of concern for severe weather. Results from an additional test ensemble constructed by combining auto-
matic and manually perturbed members show the best results for numerical forecasts of severe weather for
all probability values. While the value of human contribution in the numerical forecast is demonstrated,
further research is needed to determine how to better use the skill and experience of the forecaster in the
construction of short-range ensembles.

1. Introduction

The numerical forecasting of mesoscale phenomena
and severe convective weather poses one of the most
challenging problems faced today in the atmospheric
community. Model physics, resolution, and data assimi-
lation techniques are continuously improving and ex-
amples of promising simulations of severe convective
systems can be found (e.g., Fowle and Roebber 2003).
However, models still do not provide consistently reli-
able guidance for operations about important aspects of
severe weather such as initiation, mode, intensity, and

evolution of convection (Weiss et al. 2004). Admittedly,
short-range mesoscale numerical forecasts are ham-
pered by the largely unknown observational sampling
errors at the meso- and small scales, as well as by the
deficiencies in the models from such sources as physical
parameterization schemes (e.g., Davis et al. 2003; Bald-
win et al. 2002; Gilmore et al. 2004; Zamora et al. 2003).
Additionally, little is known about the limits of predict-
ability at the spatial and temporal scales of intermittent
weather systems responsible for producing severe
weather (Stensrud and Wicker 2004). The perception
that multiple sources of uncertainty may largely de-
grade the forecast decreases the confidence of the fore-
caster in the output produced by mesoscale numerical
models, even when they provide highly realistic looking
forecasts (Weiss et al. 2004). Inevitably, observational
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dataset errors and model deficiencies, as well as the
predictability concerns, introduce inherent uncertain-
ties that always are present in the forecast.

Ensemble techniques are one method that can be
used to explicitly account for uncertainties in the nu-
merical forecasting system and their use may assist
forecasters in assessing appropriate levels of confi-
dence. However, identifying, quantifying, and repre-
senting these uncertainties in the forecast system is a
complex task. Ideally, one should consider a multivari-
ate probability density function (pdf) defined in the
model state phase space with each component repre-
senting uncertainty at each grid point of the analysis
dataset (Epstein 1969). This pdf should then be evolved
in time with a Fokker–Plank equation (Penland 2003;
Ehrendorfer 1994) that accounts for model uncertain-
ties through stochastic nonlinear dynamics. Currently,
this method is intractable and, in practice, a much more
modest approach to the problem is used. Modern com-
putational resources still require the use of the standard
deterministic set of equations and, hence, the selection
of a limited number of realizations of the analysis pdf
and model configurations. Still, combining the solutions
of a number of slightly different numerical simulations
not only produces a forecast that is more skillful than
each individual simulation when examined over many
cases (Leith 1974), but also provides a quantitative in-
dication of forecast uncertainty (Tracton and Kalnay
1993). How these realizations (i.e., ensemble members)
are constructed is currently the subject of significant
attention in the weather research community (Shapiro
and Thorpe 2004).

One reason for that attention is that the relative ef-
fect on forecast errors from the observational dataset
errors versus model deficiencies is yet unclear (Stens-
rud et al. 2000; Bright and Mullen 2002). Recently, to
cope with model uncertainty for mesoscale predictions
of sensible weather, various model and physics param-
eterization perturbations have been considered, show-
ing significant improvements over single-model systems
(Wandishin et al. 2001; Du et al. 2004). These systems
focus primarily on those components that likely have
the largest effect on the sensible weather forecast, such
as the dynamic core (Wandishin et al. 2001) and physi-
cal process parameterizations (Stensrud et al. 2000;
Bright and Mullen 2002). On the other hand, multiple
methods to choose an optimum ensemble of realiza-
tions from the analysis pdf have been proposed. For
forecasts in the medium range, two well-established
strategies have been adopted by the major operational
centers in the United States and Europe. The breeding
(Toth and Kalnay 1993) and singular-vector (Buizza
and Palmer 1995) techniques have provided notable im-

provements in the skill of the medium-range forecasts,
even without considering model deficiencies (Kalnay
2003). However, medium-range ensembles that include
model uncertainties are found to be more skillful than
ensembles that do not include model uncertainty
(Evans et al. 2000)

Unfortunately, sampling the analysis pdf for applica-
tions on the mesoscale becomes more complex due to
the larger and less known analysis error, the large role
that physical process parameterization schemes play in
model forecasts of sensible weather, and the end user’s
more sensitive dependence upon reliable forecasts. In-
deed, the European Centre for Medium-Range
Weather Forecasts (ECMWF) Ensemble Prediction
System has virtually no skill in predicting probabilistic
warnings of severe weather events for the United King-
dom for lead times of 1–2 days (Legg and Mylne 2004),
suggesting that we have much to learn about designing
ensemble strategies for short-range forecasts of severe
weather. Currently, the breeding method is used to gen-
erate initial conditions perturbations in the National
Centers for Environmental Prediction (NCEP) opera-
tional Short-Range Ensemble Forecasting system
(SREF; Hamill and Colucci 1997; Wandishin et al. 2001.
Despite being based on the full nonlinear perturbation
growth, the breeding modes tend to project upon the
structures of synoptic systems (Toth and Kalnay 1997),
and are not necessarily linked to the structures of most
concern in the sensible weather forecast.

Xu et al. (2001, hereafter Xu01) present a method
aimed at identifying realizations of the pdf that focus
the ensemble on specific areas of concern during the
first 48 h of the forecast. They propose a method to
generate members for a short-range ensemble that ben-
efits from a forecaster’s guidance in identifying areas
where threatening weather is likely in the forecast and
the atmospheric features that can influence the devel-
opment of the threatening weather. The method, de-
scribed in detail in Xu01, involves running a tangent
linear adjoint model. Adjoint models track the gradient
of a forecast aspect with respect to the model state
vector backward in time to determine its sensitivity to
the initial conditions (ICs) state vector. To do so, a
linear operator is constructed tangent to the phase
space trajectory followed by the forward nonlinear de-
terministic forecast. The transposition of such a linear
operator results in the adjoint model [see Errico (1997)
for a comprehensive overview of adjoint models]. Ad-
joint models have been extensively used in adaptive
observation campaigns, such as the Fronts and Atlantic
Storm-Track Experiment (FASTEX) and the North
Pacific Experiment (NORPEX) (e.g., Langland et al.
1999a,b), and they are also used operationally to com-
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pute ECMWF singular vectors for the medium-range
Ensemble Prediction System (Gelaro et al. 1998). Xu01
use the adjoint model to select perturbations to the
initial conditions that produce the largest influence on
the forecast of manually defined atmospheric features;
these features are identified to impact the development
and evolution of a mesoscale convective system in the
central plains of the United States.

This approach of Xu01 assumes that the experience
and skill of human weather forecasters is a useful ad-
dition to the process of creating ensemble systems. It is
well known that forecasters routinely improve upon nu-
merical guidance, as is clearly seen in skill scores for
precipitation (Funk 1991; Olson et al. 1995). In addi-
tion, forecasters at the Storm Prediction Center regu-
larly identify mesoscale-sized regions of significant se-
vere weather threat through the issuance of outlooks
and severe weather watches with a high level of skill
(Leftwich et al. 1998; McCarthy et al. 1998). There is no
reason to assume that this human knowledge and ex-
perience, although subjective, cannot be made useful in
the creation of ensemble members and thereby benefit
the operational forecast process, particularly for rare
and significant events.

With the aim of assessing the value of short-range
numerical forecast ensembles to assist in the opera-
tional forecasting of severe weather, the Storm Predic-
tion Center (SPC) and the National Severe Storms
Laboratory conducted the 2003 Spring Program (SP03)
experiment focused primarily on the generation and
interpretation of mesoscale short-range ensembles. En-
couraged by the promising conclusions of Xu01, the
SP03 included a subexperiment to test their method for
a larger number of cases using operational forecasters
as the main drivers of the system. The underlying idea
was to create a daily, customized ensemble to provide
guidance on the severe weather threat over the follow-
ing 48 h. Essentially, the ensemble dispersion was in-
tended to be generated in specific areas, and focused
upon specific fields of interest, as opposed to every-
where in the domain, or following fast-growing modes
under global generic norms.

In this paper we present verification results of this
SP03 test ensemble. Severe weather reports and ob-
served precipitation amounts are used to assess the
quality of the experimental ensemble forecasts. In ad-
dition, results from the SP03 ensemble are compared to
operational forecasts from the NCEP SREF system and
the Eta Model for the same period. Finally, we test the
skill of mixed ensembles constructed with breeding
multimodel members from the SREF and the fore-
caster-generated members.

Section 2 presents the experimental design and the

verification datasets. The automated model diagnosis
and verification of severe weather are detailed in sec-
tion 3. Precipitation forecasts are evaluated in section 4.
Results from the mixed ensemble configurations are
presented in section 5 and a summary of conclusions
and recommendations for implementation are pre-
sented in section 6.

2. Experiment design

a. Generation of perturbations

The forecaster-generated ensemble consists of 32
forecasts produced using the nonhydrostatic fifth-
generation Pennsylvania State University–National
Center for Atmospheric Research (PSU–NCAR) Me-
soscale Model (MM5, version 3; Dudhia 1993; Grell et
al. 1994). The MM5 was selected because it has been
shown to produce forecasts comparable to those of the
Eta Model at similar horizontal grid spacing during the
warm season (Colle et al. 2003) and because an adjoint
version of the MM5 is available. This test ensemble of
the SP03 experiment (MM5ADJ) ran weekdays from
28 April to 6 June (SP03 did not operate on weekends).
A total of 27 cases are available for evaluating the en-
semble guidance potential. To generate the set of dif-
ferent ICs for the ensemble, the method detailed in
Xu01 was followed. Each day an experienced human
severe weather forecaster was asked to identify 16 fea-
tures of interest in the control run that were, in the
forecaster’s opinion, important to the potential devel-
opment and/or evolution of severe weather on the fol-
lowing day (1200–1200 UTC day 2). The forecaster was
able to select atmospheric structures at any time (in 6-h
intervals) from the 48-h Eta control forecast for the
following fields: horizontal and vertical wind compo-
nents, temperature, specific humidity, geopotential
height, sea level pressure, vertical relative vorticity and
the lifted index. These fields were predetermined to
allow an easier operational implementation for SP03,
but in practice there is no other limitation on setting a
feature of interest to initialize the adjoint model but to
be differentiable with respect to the model state. Figure
1a shows examples of human-drawn features of interest
for the forecast cycle of 5 May.

Table 1 shows the distribution of fields used by the
forecasters during the entire experiment. The fre-
quency of use is similar for all fields, with less prefer-
ence for the vertical velocity and relative vorticity. This
uniform distribution likely is a simple consequence of
having a larger number of perturbations to create daily
than the number of fields to choose from, inducing a
tendency to use all available fields each day. Relative
vorticity shows a lower use possibly because it is not
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traditionally used in mesoscale conceptual models for
severe weather phenomena. The least frequent use of
vertical velocity likely reflects the low confidence of the
forecaster in its numerical forecast, selecting instead
features related to the vertical velocity such as fronts,
convergence zones, and jets. The distribution of vertical
levels indicates that the surface, 850, and 500 hPa are

preferred. The emphasis on low-level fields may be due
to the forecasters focusing the ensemble on features
related to convective initiation, which often is the sig-
nificant concern for determining whether or not severe
weather will occur (Johns and Doswell 1992;
Stensrud and Fritsch 1993). Regarding the size of the
structures identified by the forecasters, almost 80% of

TABLE 1. Relative frequency of fields, levels, areas, and forecast times selected by the forecasters and used to initialize the adjoint
model integrations. A total of 432 perturbations (16 perturbations � 27 days) were defined during the experiment.

Field U V T Q Vorticity Height Lifted index SLP W
Frequency (%) 12.7 11.3 13.2 11.3 7.2 13.0 14.4 11.8 5.1

Level Surface 850 hPa 700 hPa 500 hPa 250 hPa
Frequency (%) 36.1 20.6 9.9 28.5 4.9

Area (103 km2) �200 200–400 400–600 600–800 800–1000 1000–1200 1200–1400 �1400
Frequency (%) 12.3 32.4 23.8 13.9 4.9 3.7 3.0 6.0

Forecast time (h) �12 �18 �24 �30 �36 �42 �48
Frequency (%) 0.5 0.9 11.3 26.4 47.0 8.3 5.6

FIG. 1. Example steps from the ensemble test process for 5 May. (a) Areas and fields selected by the forecaster as important for the
development of severe weather the next day. Geopotential height (GHT) and temperature T were selected at 500 hPa and t � 24 h
lead time (1200 UTC 6 May); the wind components (U, V ) at 500 hPa and the specific humidity q at the surface were specified at t �
36 h lead time (0000 UTC 7 May). (b) Example of initial condition perturbation of a single member: temperature at 700 hPa (°C; thin
line) and perturbation (°C; thick line with 0.25°C intervals; the zero isoline is not shown and dashed lines show negative values) added
to the original field as a result of the adjoint model run using the wind components feature selected by the forecaster [shown in (a)].
(c) Storm reports and probability of severe weather (black lines at 25% intervals) using the SCP parameter from the 32-member MM5
adjoint ensemble for the 24-h period beginning at 1200 UTC 5 May. Dotted lines depict the 5% probabilities.
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the areas are smaller than 800 103 km2 (about the area
of the state of Texas), which corresponds to the dimen-
sions of large low-level mesoscale structures such as
fronts, jets, and low pressure centers. However, larger
areas were occasionally defined, with some of them be-
ing the size of half the conterminous United States
(CONUS). These big areas likely rendered unreliable
results from the adjoint model, and hence it is doubtful
if these perturbations are useful, but they consist of
only a few outliers during the whole experiment. The
distribution in forecast hours shows that almost 75% of
the time the forecaster defined the feature of interest at
t � 30 h or t � 36 h, corresponding to the climatological
peak in convective initiation for the day 2 forecast. This
is in agreement with the forecast period under study in
the SP03 experiment (day 2).

Each day, for each of the 16 selected features of in-
terest, an adjoint model integration was correspond-
ingly initialized and the sensitive areas of each fore-
caster-specified feature to the ICs were derived. The
adjoint model used is the MM5 Adjoint Modeling Sys-
tem (Zou et al. 1997, 1998) developed by NCAR. The
code is derived from a simplified version of the stan-
dard MM5. The adjoint runs have no parameterized
convection but include explicit microphysics, radiation,
and surface processes. Once the sensitivity fields were
obtained from the adjoint, the horizontal wind compo-
nents and temperature sensitivities were rescaled to a
maximum amplitude of 8.0 m s�1 and 4.0 K, respec-
tively. This rescaling, also used by Xu01, is intended to
generate perturbations within the typical analysis error,
and produced typical perturbation amplitudes of 2
m s�1 and 1.5 K at the 24–36-h forecast times. As shown
later, these amplitudes are equivalent to the perturba-
tion amplitudes found in the NCEP SREF ensemble
and are consistent with observational uncertainty
(Zapotocny et al. 2000). Finally, two MM5 simulations
were run for each highlighted feature, each one using
perturbations in both directions (positive and nega-
tive). Figure 1b shows an example of such perturbations
for the temperature field at 700 hPa. Since the fore-
caster was requested to highlight 16 features each day,
32 perturbed simulations were produced to form the
MM5ADJ ensemble.

Although the adjoint model is tangent linear, and
hence the perturbations were defined strictly to change
the forecaster-selected feature in a linear sense, the
nonlinear evolution of the perturbation can be inter-
preted as a stochastic perturbation to the initial model
state trajectory. However, this stochastic component of
the perturbation will likely be confined about the area
of concern in the forecast at the forecast time selected.
In essence, by using both positive and negative pertur-

bations the feature of interest likely is both enhanced
and reduced equally in the linear sense. The nonlinear
evolution of the positive and negative perturbations,
however, may yield unexpected results since the speci-
fied feature of interest likely is not enhanced and re-
duced symmetrically in the two nonlinear forecasts.
This nonlinear behavior is viewed as a positive attribute
of the system, ensuring a rich diversity of solutions
among the ensemble members over the forecaster-
defined regions of concern as opposed to the trivial
effects of the purely linear evolution of the linearly
derived perturbations.

b. Model description

All simulations in the experiment are run with two
domains interacting via a two-way nesting strategy. The
coarser domain has 66 � 46 grid points, 90-km grid
spacing, and covers the CONUS, southern Canada, the
Gulf of Mexico, the eastern North Pacific, and the west-
ern North Atlantic. This is the domain used to run the
adjoint model and define the IC perturbations. The in-
ner domain has 157 � 97 grid points, 30-km grid spac-
ing, and covers basically the CONUS. All simulations
contain 24 sigma levels, with higher concentration at
lower altitudes to better resolve boundary layer and
near-ground processes. Subgrid moist convection is pa-
rameterized using the Kain and Fritsch (1990) scheme.
A simple microphysics scheme that allows for ice
concentration at temperatures below freezing is used
(Dudhia 1989). Boundary layer processes are param-
eterized using the Eta planetary boundary layer (Janjić
1994) scheme together with the Dudhia (1996) five-
layer simple soil model. Cloud and clear air radiative
effects, as well as water vapor, carbon dioxide, and
ozone concentrations, are considered in the radiation
scheme. Both coarser and inner domains use the same
parameterizations for all simulations. The Eta Model
analysis at 1200 UTC is used to provide the ICs for the
MM5ADJ. Time-dependent lateral boundary condi-
tions are also provided by the 1200 UTC Eta Model
results and are supplied to the simulation by means of
a relaxation inflow–outflow five-point sponge frame.
An upper radiative condition is used to minimize spu-
rious noise reflection at the model top.

c. Verification and comparison datasets

The evaluation of the MM5ADJ is based on obser-
vations of severe weather and precipitation over the
continental United States, east of the Rockies. All veri-
fication and forecasts are remapped to the MM5 30-km
domain, in order to facilitate and ensure a fair compari-
son among them. Two observational datasets are used
for verification:
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1) SPC severe weather reports: The severe weather
probabilistic forecasts are verified using the SPC se-
vere weather reports database. This database con-
tains a real-time list of tornado, large hail (larger
than 20 mm), and convective wind (stronger than
50 kt; 1 kt � 0.5144 m s�1) damage reports in the
United States with information about the intensity
of the event and its location in space and time. Fig-
ure 1c shows an example of the reports in the SPC
database. A gridded field on the MM5 domain is
created by setting the grid points with at least one
report of severe weather in its grid box to the value
of 1. This field does not contain information about
the type, intensity, or density of reports within the
grid box but it is consistent with the probabilistic
forecast that it verifies. The model forecasts strictly
refer to the occurrence of severe weather within a
grid box rather than to the type, intensity, or density
of events.

2) NCEP/CPC stage IV precipitation: To verify the
precipitation forecasts the NCEP/Climate Predic-
tion Center (CPC) 4-km stage IV data (Baldwin and
Mitchell 1997) are used at 6-h intervals. This dataset
is based on a multisensor hourly analysis and it is
quality controlled manually. The precipitation
remapping from the 4-km Hydrologic Rainfall
Anaysis Project (HRAP) grid to the 30-km MM5
grid is performed while maintaining the original
amount of precipitation as done by NCEP for grid
interpolation and quantitative precipitation forecast
(QPF) verification (Mesinger 1996).

In addition to the objective verification against the
observational datasets, the relative value of the
MM5ADJ is assessed by comparing it against the op-
erational short-range forecasts available for the same
period:

1) Subjective day 2 outlooks: After reviewing deter-
ministic model guidance, the SP03 forecaster issued
an experimental severe weather outlook for day 2,
following the same guidelines used for the routine
operational SPC outlooks (Kay and Brooks 2000).
The SPC outlooks are issued to forecast the prob-
ability of severe weather within 25 mi of a point,
which is equivalent to a square area of about 80 km
on each side. Admittedly, remapping the subjective
outlook probabilities to a 30-km grid produces a
shift toward overforecasting since the original prob-
ability values that are implicitly calibrated through
the forecaster experience and verification results
have been shown to be quite reliable. However, it is
uncertain how sensitive the forecaster is to this defi-

nition when rendering each individual outlook. In
addition, the SPC outlooks are issued using five dis-
crete probability categories: 0.00, 0.05, 0.15, 0.25,
and 0.35. Again, in order to ensure fair comparison
among the forecasts, the model forecasts are trun-
cated into the SPC categories. For instance, all se-
vere weather probability forecasts above 0.35 are
considered 0.35 in the verification.

2) Operational Eta: The operational 1200 UTC daily
run from the NCEP Eta Model is included to add a
reference from a deterministic model into the com-
parison. Probabilistic forecasts from this model are
trivially calculated by setting the field to 1 (0.35 for
severe weather forecasts, as this is the highest prob-
ability allowed) when the condition to forecast is
satisfied and 0 otherwise.

3) NCEP SREF system: The NCEP ensemble for
short-range forecasting (e.g., Hamill and Colucci
1997; Wandishin et al. 2001) during SP03 consisted
of 10 members: 5 Eta and 5 Regional Spectral Model
(RSM) members. The SREF forecasts provide a
unique opportunity to compare the experimental
MM5ADJ ensemble, which uses human-perturbed
ICs, against the dynamical method of breeding of
growing modes used in the SREF. Unfortunately,
owing to problems with the data archive, only 11
days are available for comparison during the period
that the SP03 lasted. However, the available days
correspond mainly to the first 2 weeks of May 2003,
which was a historically active period of severe
weather in the central plains and eastern United
States (Schneider et al. 2004). All results obtained
from such a small sample of 11 days are comple-
mented with a statistical significance test.

4) Practically perfect prog: Although this field is not a
forecast, it is used as a measure of the upper limit of
a probabilistic forecast provided some realistic
bounds in generating the forecast (e.g., smoothness,
size, and spatial continuity of significant probability
areas). Brooks et al. (2003) discuss the concept of
the practically perfect progs (PPPs) and present the
main characteristics. Essentially, the PPP field is
constructed by using a nonparametric density esti-
mation function with a two-dimensional Gaussian
kernel for each grid point with a report in the ob-
servational dataset. This function spreads the prob-
ability of occurrence of the event around the grid
point. The parameters that define the kernel are
calculated by Brooks et al. (2003) from the statistical
properties of the climatology of SPC operational
outlooks. This hypothetical forecast is as accurate as
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could be expected for a forecaster already aware of
the reports, given the limitations of real-world fore-
casting.

3. Verification of severe weather forecasts

Unlike the SPC outlooks, current models do not ex-
plicitly forecast severe weather. The diagnosis of severe
weather from analysis or models that do not explicitly
resolve convection can be inferred, at least in part,
through indices that characterize the environment and
may allow some basic discrimination of the type or in-
tensity of convective phenomena supported (Thomp-
son et al. 2002). Most severe weather indices consist of
a combination of convective instability and shear. The
mechanisms of convection triggering are typically over-
looked because they often act at scales not resolved by
the data. However, models incorporate parameterized
convection, which by definition includes a triggering (or
activation) function. Although the trigger function is a
complex part of the convective schemes (e.g., Kain and
Fritsch 1992), it provides an additional component to
be considered together with the environmental indices
for use in the diagnostic evaluation of severe weather
from the model output. Thus, in this study, severe
weather is defined to occur within a grid box when both
the supercell composite parameter (SCP; Thompson et
al. 2002) �1 and the triggering of the model’s convec-
tive scheme occur simultaneously. Together, these two
quantities specify regions in which the model jointly
predicts an environment that is favorable for supercell
thunderstorms, and in which convection develops. The
SCP is a nondimensional normalized parameter and is
calculated as a combination of the most unstable con-
vective available potential energy (muCAPE) in the
column, 0–3-km storm relative helicity (SRH) using the
Bunkers et al. (2000) storm motion algorithm, and the
bulk Richardson number (BRN) shear (Bluestein
1993):

SCP �
muCAPE

1000 J kg�1 �
0–3 km SRH

100 m2 s�2 �
BRN shear

40 m2 s�2 .

Hence, the probability of occurrence of severe
weather during a 24-h period at every grid point is sim-
ply defined as the number of ensemble members having
an SCP larger than 1 and simultaneous convective pre-
cipitation at that grid point anytime during that 24-h
period, divided by the total number of ensemble mem-
bers. We use the threshold of SCP larger than 1 as it is
the value suggested by Thompson et al. (2003) in order
to discriminate supercell storm environments in both
observed and Rapid Update Cycle-2 analysis–forecast
model proximity soundings. For each case, two time
periods for the probability of occurrence of severe

weather are produced and evaluated from each of the
four available forecasts used in the comparison: one for
the 0–24-h forecast period and another for the 24–48-h
forecast period. Figure 1c shows an example of this
probability field from the MM5ADJ, showing for 5
May forecast probabilities of severe weather up to 80%
from the lower Mississippi Valley to the Ohio and Ten-
nessee Valleys.

Verification of the probabilistic forecasts for all cases
is done by using the attributes diagram. This diagram
shows the observed frequency of an event as a function
of the forecast category and allows an interpretation of
skill for each forecast category separately. The attri-
butes diagram also allows one to interpret the reliabil-
ity, resolution, and uncertainty of each forecast interval
(Wilks 1995). Figure 2 shows the attributes diagram for
all the forecasts compared in this study. The sample
climatological frequency is 0.016 for the 27 cases and
0.024 for the 11 SREF cases. Not surprisingly for the
prediction of unlikely events, all forecasts in the com-
parison show good skill at predicting no occurrence of
severe events (0.00 probabilities), with the human out-
looks showing the highest reliability in this category.
For low (0.05) and moderate (0.15) probabilities, the
MM5ADJ is the only forecast showing some skill, with
especially good reliability at the low category. The fact
that the MM5ADJ ensemble is underforecasting for
both days 1 and 2 in the low category may indicate that
a more adequate threshold for the SCP parameter may
be needed for this system rather than SCP � 1. For
higher probabilities (when a majority of the ensemble
members agree), the MM5ADJ shows no skill in pre-
dicting severe weather, although some resolution still
exists between the 0.25 and 0.35 forecasts. This lack of
skill at higher probabilities could be a consequence of
overforecasting both convective activity in the model or
SCP values, but also may be an indication of underdis-
persion in the ensemble, perhaps from using a single-
model setup. The human outlooks, however, show skill
at the high probability categories, revealing the skill of
the forecasters when they show high confidence in the
intensity of the situation of the day and decide to use
high probabilities in the outlook. On the other hand,
Eta forecasts are clearly hampered in this type of
probabilistic verification, with the model overforecast-
ing severe weather. The deterministic Eta probability
of detection is only 11%–12% when SCP � 1 and con-
vective rain occurs in a grid point during the 24-h pe-
riod.

Regarding the results from the 11 SREF cases, simi-
lar scores to those from the 27 days sample are obtained
for the SPC outlooks, MM5ADJ, and Eta Model, with
some minor but notable differences. The human-
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rendered outlooks again show a remarkable increase in
skill and reliability for the high probability categories
during this unusually active severe weather period.
Also, the MM5ADJ is the only model showing some
skill at the 0.35 probability category. Focusing on the
SREF results, it shows almost perfect reliability (even
better than the PPP for day 1) for the low category but
has no skill for higher-probability categories. The sig-
nificance of the differences between the MM5ADJ and

SREF results is assessed using a bootstrap nonparamet-
ric test with 10 000 resamples (Wilks 1995). Differences
between MM5ADJ and SREF visible in Fig. 2b are all
significant to the 99% confidence level, except for the
25% category for D1. For this particular case, observed
frequency is significantly larger than SREF at a 95%
confidence level. This result clearly shows the advan-
tage of the MM5ADJ over the SREF in forecasting
probabilities of severe weather at and above 0.15, usu-

FIG. 2. Attributes diagrams for the probability of severe weather as obtained from SP03
preliminary day 2 outlooks, t � 24 and t � 48 h MM5ADJ, Eta, and SREF. (a) All 27 days of
the MM5ADJ experiment are used and (b) results from the subset of the 11 days the SREF
output is available.
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ally associated with the more intense and damaging epi-
sodes. This is most likely a consequence of the custom-
ized design of the MM5ADJ to focus on the areas of
severe weather threat, whereas the SREF system is de-
signed to cover a wide range of mesoscale forecast as-
pects and shows its strength at the low-probability
range.

Note that in both panels of Fig. 2, differences be-
tween results from day 1 (D1) and day 2 (D2) forecasts
are small for all models. Finally, as expected, besides
the SREF is forecasting the low category with great
success for this small sample size, all forecasts consid-
ered in this comparison are far from the hypothetical
limit set by the PPP field.

Targeted spread

To better understand the differences between the
MM5ADJ and SREF systems in forecasting higher-
probability (�25%) episodes of severe weather, we
analyze the ability of the MM5ADJ to generate spread
specifically over the areas of concern defined by the
forecaster. The spread is evaluated using the standard
deviation around the mean of various model prognostic
fields. Two versions of the spread for each model are
computed (Table 2): the global spread is the mean of
the spread calculated at each sounding site1 within the
CONUS, east of the Rocky Mountains; the targeted
spread is computed considering only sounding sites
within the areas of concern and times designated by the
forecaster in constructing the ensemble. Table 2 shows

the spread at 24 and 36 h (within SPC day 2) for the
fields of temperature, specific humidity, and wind.
While the global spread generally is larger in the SREF
than in the MM5ADJ, the values of targeted spread
between the two ensemble systems are very similar in
size. This suggests that the amplitudes of the original
perturbations applied to the ICs in the MM5ADJ are
reasonable and do not yield spread that is too large.
Both the MM5ADJ and SREF systems also show an
increase in spread from 24 to 36 h, revealing that the
dispersion is not yet saturated in either of the en-
sembles and continues to grow after 24 h. However, the
relative increase of spread from the global to the tar-
geted spread is much larger in the MM5ADJ than in the
SREF, especially in low levels where increases in
spread ranging from 65% to 95% are obtained. In ad-
dition, the spread in the targeted regions is always
larger than the global spread in the MM5ADJ, whereas
this is not true for the SREF. Therefore, the breeding
vectors technique (as well as the model diversity) in the
SREF system produces larger dispersion in a global
sense, whereas the customized MM5ADJ successfully
targets ensemble dispersion both spatially and tempo-
rally over the region selected by the forecaster.

4. Verification of precipitation forecasts

a. Bias and equitable threat score

The 6-hourly accumulated precipitation forecasts
from the MM5ADJ, Eta, and SREF are verified using
the NCEP/CPC stage IV dataset. Although probabilis-
tic fields can be derived from an ensemble of precipi-
tation forecasts, we first compute verification scores of
deterministic-like fields from the ensembles, such as the
mean and the probability mean matched (PMM) pre-
cipitation. The PMM (Ebert 2001) is calculated as the

1 The calculation of the standard deviation does not involve the
observed sounding data, but it is found that averaging the model
fields at just the sounding locations reduces problems that can
arise from the spatial correlation of the data.

TABLE 2. Mean of the std dev computed at sounding sites. Global values are averaged over the CONUS east of the Rockies, and the
targeted include only the areas delineated by the forecaster when defining the perturbations. Values in parentheses indicate the percent
change from the global to the targeted standard verification. Here, Qll refers to the average of the std dev of Q at 1000, 850, and
700 hPa.

MM5 SREF

Global Targeted Global Targeted

Variable 24 h 36 h 24 h 36 h 24 h 36 h 24 h 36 h

T850 0.63 0.83 1.24 (�96%) 1.40 (�68%) 0.87 1.01 1.00 (�15%) 1.25 (�24%)
T700 0.45 0.62 0.75 (�66%) 0.96 (�56%) 0.80 0.97 0.77 (�3%) 1.01 (�5%)
T500 0.39 0.52 0.52 (�33%) 0.71 (�37%) 0.64 0.74 0.58 (�10%) 0.78 (�6%)
T250 0.41 0.51 0.48 (�17%) 0.61 (�19%) 0.76 0.87 0.78 (�2%) 0.899 (�3%)
Qll 0.55 0.78 1.06 (�95%) 1.29 (�64%) 0.79 0.88 0.86 (�9%) 0.96 (�8%)
Q850 0.71 0.99 1.36 (�90%) 1.63 (�64%) 0.86 0.93 1.03 (�20%) 1.07 (�15%)
Q700 0.50 0.72 0.91 (�83%) 1.06 (�49%) 0.72 0.84 0.73 (�2%) 0.87 (�3%)
U850, V850 1.54 1.97 2.90 (�88%) 3.31 (�68%) 1.95 2.09 2.27 (�16%) 2.46 (�18%)
U700, V700 1.51 1.96 2.55 (�69%) 2.91 (�48%) 1.93 2.17 2.06 (�7%) 2.36 (�9%)
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ensemble mean, rescaled locally using the global (all
ensemble members) distribution of precipitation
amounts. This field is intended to be representative of,
and to exhibit the properties (in terms of smoothing out
uncertain features from the individual members) of the
ensemble mean, but produces a distribution of precipi-
tation amounts similar to the precipitation field of an
individual deterministic member.

To provide global skill scores for the single-field pre-
cipitation forecasts, we compute the bias (BIAS) and

equitable threat score (ETSs). For the sake of brevity,
only results for the 11 SREF cases are presented. The
BIAS for 11 precipitation thresholds is calculated for
each 6-h interval as

BIAS �
F

O
,

where F is the number of forecast points above the
threshold and O the number of observed points above
the threshold.

FIG. 3. The 6-h accumulated precipitation BIAS as a function of
precipitation threshold for the 11 SREF cases. Plots include the
reference line of BIAS � 1.
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All systems overpredict (BIAS � 1) amounts less
than 5 mm, though the Eta Model shows the lowest bias
(Fig. 3). As expected, for larger amounts, all models
underpredict (BIAS � 1) precipitation, generally de-
caying to smaller bias with increasing threshold. Notice-
ably, the bias of both the mean and PMM SREF pre-
cipitation fields decay rapidly toward zero whereas the
Eta, and especially the MM5ADJ, fields do not decay
as fast for larger precipitation thresholds (�25 mm 6
h�1). It is apparent by comparing the mean and PMM
results, from both MM5ADJ and SREF systems, that
the PMM in general provides a slightly better BIAS
than the mean, especially at larger thresholds where the
mean is reduced more strongly through averaging.

To ensure a fair comparison of the precipitation fore-
casts among the models, the bias is corrected using a
rescaling technique on the local precipitation amounts.
For each case, threshold, and 6-h period, the bias (F/O)
of all remaining cases in the dataset (10 days) is com-
puted. Then, an unbiased threshold for the model pre-
cipitation is searched for iteratively until a value is
found where Funbiased Thrs � Obiased Thrs and a correction
factor (equal to bias-corrected threshold/original
threshold) is obtained for each precipitation threshold.
The bias correction is then applied by multiplying the
original precipitation amount by this correction factor.
A linear interpolation is used to calculate the correction
factor for values between thresholds. As expected, the
bias correction basically decreases (increases) the pre-
cipitation amounts below (above) 4–5 mm. Not surpris-
ingly, mean fields require a larger bias correction than
PMM at higher thresholds due to the smoothing effect
of averaging.

The day 1 results from the MM5ADJ system indicate
that even for ensemble mean PMM-adjusted precipita-
tion forecasts, the MM5ADJ appears to occasionally
improve upon the SREF. This is promising, since the
experiment was not designed to focus upon precipita-
tion forecasts. However, in retrospect this result per-
haps is not too surprising, since heavy precipitation
amounts are usually linked to active mesoscale convec-
tive systems that are often associated with severe
weather. Also note that most of the MM5ADJ im-
provements over the SREF occur in the first 30 h and
the forecasters most often selected forecast times of 36
h or less in creating the ensemble perturbations. Con-
sidering the smaller amounts of spread in the MM5ADJ
seen outside of the forecaster-targeted areas in com-
parison with the SREF, this positive result is encourag-
ing.

The remaining bias in the precipitation fields after
the correction is shown in Fig. 4. Besides the very good
bias values for low precipitation amounts from the cor-

rected Eta forecasts, the PMM fields show generally
better results from the correction at low precipitation
values than the ensemble mean. However, for high
thresholds, the bias correction is less effective, with the
MM5ADJ mean and the SREF PMM resulting in
slightly better biases than the other models in that
range. Unfortunately, the number of observation–
forecast pairs available to estimate the bias correction
factor is limited and the significance of these differ-
ences is weak, producing undesired results at high
amount thresholds.

The ETS provides a good global skill score intended
to minimize the impact of biases in the evaluation of
precipitation forecasts. The score is computed as

ETS �
C � E

F � O � C � E
with E �

F � O

T
,

where C is the number of points with both forecast and
observations above a threshold and T is the total num-
ber of grid points in the forecast. Values of ETS range
from 0 to 1, with larger values implying a more accurate
forecast. Since the lower thresholds of precipitation are
the most populated and the PMM field allows for a
better bias correction than the ensemble mean at these
thresholds, only the PMM fields are shown in the com-
parison of ETS values (Fig. 5). The SREF PMM and
the Eta produce higher ETSs than the MM5ADJ for
low (�2 mm 6 h�1) precipitation amounts. As ex-
pected, the ETS decreases for all models as the thresh-
old increases; however, the loss of skill is more rapid for
the SREF PMM and Eta, such that the MM5ADJ
PMM produces the best forecasts for amounts above 25
mm 6 h�1 for day 1. Table 3 summarizes the results of
the bootstrap significance test using 10 000 resamples
for the differences between MM5ADJ and SREF ETS
scores. Deterministic precipitation forecasts from the
MM5ADJ system are clearly degraded on day 2 for all
precipitation thresholds. Day 1 results from the
MM5ADJ system are consistent with the conclusions in
the previous section, since heavy precipitation amounts
are usually linked to active mesoscale systems that of-
ten produce severe weather reports.

Admittedly, the differences in skill of precipitation
forecasts among the systems may be a consequence of
the different microphysics and convective schemes used
in the models. The Kain–Fritsch convective scheme
(Kain and Fritsch 1990) has been shown to produce
useful forecasts of maximum rainfall amounts, although
the location of the heaviest rainfall may be displaced by
several hundred kilometers (Gallus 1999). In contrast,
the Betts–Miller–Janjić convective adjustment (Janjić
1994) used in five of the SREF members has been
shown to produce broad areas of rainfall with better

JUNE 2006 H O M A R E T A L . 357



skill for lower precipitation amounts, although it may
miss the heavier rainfall amounts (Bright and Mullen
2002; Wang and Seaman 1997). Nevertheless, our re-
sults suggest that the targeting of ensemble dispersion
over areas with predicted active convection tends to
improve the forecasts of high precipitation amounts
more than the forecasts of low precipitation amounts,
as reflected in the ETS score results. Since high pre-
cipitation amounts present a more significant flood
threat to the public, the MM5ADJ appears to be pro-

viding useful deterministic information on the precipi-
tation threats for day 1.

b. Probabilistic forecasts

Besides the single-field (deterministic like) precipita-
tion forecasts, ensemble results can account for the un-
certainty in the forecast. A common way to express the
uncertainty is to forecast the probability of an event as
determined by the frequency of occurrence among the
ensemble members. Thus, the skill of the forecasting

FIG. 4. BIAS of the 6-h accumulated BIAS-corrected precipita-
tion as a function of precipitation threshold for the 11 SREF cases.
Plots include the reference line of BIAS � 1.
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systems in predicting the probabilities of the bias-
adjusted 6-h accumulated precipitation above 1, 20, and
35 mm is evaluated. The skill of the probabilistic fore-
casts is compared using an attributes diagram for each
threshold (Fig. 6) and the statistical significance of the
results is tested by means of a bootstrap nonparametric
method to a 95% confidence level for the differences.

The probability of 6-h precipitation above 1 mm has
good reliability in both ensembles for forecasts up to
the 30% category, with the MM5ADJ being signifi-
cantly more reliable than SREF for the 10% and 30%
categories. For higher probabilities, the SREF forecasts
are better, with skill and resolution for all categories.
Results further indicate that as the accumulated pre-
cipitation amounts increase, the skill of all the systems
decreases. In fact, for all forecast categories, none of
the systems produce skillful forecasts for precipitation
amounts greater than 20 mm 6 h�1 (Figs. 6b and 6c).
The MM5ADJ show small but significant differences
with respect to the SREF forecasts for the 10%, 30%,
and 50% categories of 20 mm 6 h�1. For higher prob-
abilities, the SREF shows a remarkable resolution, pro-
viding valuable forecasts (i.e., observed frequency cor-
responding to a forecast category) of 40% when 100%
is predicted by the ensemble.

Forecasts of more than 35 mm are less reliable than
those of 20 mm, but the MM5ADJ shows some resolu-
tion for forecasts up to 50% and provides significantly
more reliable forecasts than SREF for the 30%, 50%,
and 70% category. However, the skill of the high prob-
ability forecasts from the MM5ADJ is low. This re-
duced reliability is a reflection of high agreement
among ensembles on an erroneous forecast. One rea-
son for this result may be that the model incorrectly
forecasts heavy precipitation amounts in areas far from
the area of concern defined by the forecaster, so that
the dispersion in the model is low and high probabilities
are forecasted.

Comparison of the three panels in Fig. 6 reveals that,
although the loss of skill as the precipitation amount
increases is observed in both systems, the MM5ADJ
produces significantly better probabilistic forecasts of
heavy precipitation amounts for cases with moderate
probabilities (indicating that there is some dispersion,

FIG. 5. ETS of the BIAS-corrected PMM 6-h accumulated pre-
cipitation as a function of precipitation threshold for the 11 SREF
cases.

TABLE 3. Significance test results for ETS values shown in Figs.
5a and 5b. The S or M indicates that SREF or MM5ADJ produces
a significantly larger ETS score than the other at a level of 95%
confidence. Dashes indicate not significantly different ETS values
for the two systems.

Precipitation threshold (mm)

Forecast 0.1 1 2 5 10 15 25 35 50

06 h S S S S S S — M —
12 h S S S S S — M M —
18 h S S S S — — — — M
24 h S S S S S S M M M
30 h S S — M M M — — —
36 h S S — S S S S S —
42 h S S S S S S S S —
48 h S S S S S S S S —
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or uncertainty, in the ensemble). This is not unexpected
from an ensemble constructed with a single model and
designed to generate dispersion over specific areas with
the potential for severe convective activity (and likely
heavy precipitation amounts). Areas not targeted by
the forecaster when defining the perturbations will
likely have little or no dispersion.

5. Mixed ensemble test

Severe weather and precipitation verification scores
for the MM5ADJ experimental ensemble reveal the
value of creating the ensemble that targets areas of
specific concern during the forecast time interval. The
experimental ensemble forecasts severe weather with
some skill and produces some better ETS and proba-
bilistic forecasts for heavy precipitation amounts than
the operational SREF system. However, we hypoth-
esize that the lack of dispersion in areas not selected by
the forecaster results in inferior forecasts of low-
intensity severe episodes and low precipitation
amounts. On the other hand, the SREF system shows
better skill in forecasting low-intensity events but pro-
duces unreliable high probability forecasts of severe
weather and worse probabilistic forecasts of heavy pre-
cipitation amounts than MM5ADJ.

To test the effect of adding members to the
MM5ADJ system that provide spread across the entire
domain, we evaluate the forecast skill of an ensemble
generated by combining the 32 MM5ADJ and 10 SREF
members to produce a 42-member ensemble (42ENS).
This ensemble not only will benefit from a large num-
ber of members but also from being multimodel and
including two initial conditions perturbation tech-
niques. This ensemble is still primarily focused on tar-
geting severe weather but may also benefit from the
globally better scores of the 10 SREF members.

Severe weather forecasts are produced for the
42ENS following the same method presented in section
3 (Fig. 7). The bootstrap nonparametric test is also used
to assess the significance of the differences between the
42ENS and MM5ADJ results. The attributes diagram
curve for the 42ENS forecasts shows the superior skill
of this configuration as compared to the MM5ADJ for
almost all probabilities. For the 15% and 30% catego-
ries only, the 42ENS does not produce results signifi-
cantly better than MM5ADJ for both days 1 and 2. It is
noteworthy that the 42ENS produces the best model
forecasts for the 25% category and on day 1 the 42ENS
forecast is the only one of all considered forecasts in
this comparison with some skill at all forecast catego-
ries.

These results suggest that the combination of systems
produces a positive synergism in the forecast of severe
weather. One mechanism to correct the overprediction
initially obtained at high probabilities for the MM5ADJ
is by adding members that do not forecast as much
convective activity so that the resulting probabilities are
generally lower and the overprediction is to some ex-
tent alleviated.

FIG. 6. Attributes diagrams for 6-h accumulated precipitation
thresholds at (a) 1, (b) 20, and (c) 35 mm. Note the logarithmic
scale in the inset histograms.
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6. Discussion

The SPC/NSSL SP03 included an experimental en-
semble aimed at testing for an extended period of
time the ensemble generation method of Xu01 who
proposed using human forecasters to identify atmo-
spheric features they believed to be important to the
development and evolution of severe weather during
the 24–48-h forecast period. Using an adjoint model,
perturbations to the forecast model initial conditions
that would influence these forecaster-selected atmo-
spheric features are identified and used to create an
ensemble of model forecasts. The performance of this
experimental ensemble is evaluated by using severe
weather reports and 6-h accumulated precipitation ob-
servations.

The experiment was designed to run in real time,
with the initial hope that forecasters would have time to
examine and verify the ensemble forecasts and gain
experience in selecting the perturbation fields, vertical
levels, and areas. Unfortunately, computer limitations
did not allow for this learning experience to happen as
the forecasts were available too late in the day. Thus,
the forecasters were only given basic guidance on how
to generate the perturbations. Many other aspects of
the experiment also are imperfect and should be im-
proved upon in future experiments. Yet the initial re-
sults are promising and warrant careful consideration.

Verification results show value in the experimental
ensemble forecasts compared to the operational SREF

system, despite the multiple improvements still possible
to the experimental system. A single model is used in
the experiment, with the human-selected perturbations
the only source of dispersion in the ensemble system.
Although basic training was provided at the beginning
of each experimental week of SP03 covering the selec-
tion of fields, levels, sizes, and time of the targeted
structures, no definitive rules were made available to
the forecasters on the construction of perturbations,
because this had never before been conducted as a real-
time experiment. Additionally, the forecasters had no
previously experience with this type of ensemble cre-
ation and no quantitative feedback was provided to
them during the experiment. Further research might
indicate whether certain sizes, fields, and levels are
more appropriate to define the perturbations for spe-
cific types of predicted weather.

Despite the lack of previous knowledge and experi-
ence using this technique, the experimental ensemble is
shown to improve the numerical forecasts of severe
weather, arguably because it successfully generates dis-
persion over the areas of concern selected by the fore-
caster. The system also produces better probabilistic
forecasts of heavy precipitation than the SREF. How-
ever, the experimental ensemble forecasts of low prob-
ability severe weather and low amounts of precipitation
have less skill than those of the SREF and the opera-
tional Eta. A clear conclusion from these results is that
this ensemble, customized to exclusively focus on high-
intensity and damaging weather, lacks global dispersion

FIG. 7. As in Fig. 2b but for the 42ENS system.
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and produces unreliable forecasts for nonhazardous
weather events. Results from an ensemble constructed
by combining globally perturbed members (from
SREF) and humanly perturbed members (from
MM5ADJ) show promising skill for the forecast of se-
vere weather. While the experimental setup was not
perfect, the results indicate that the value of human
beings in the creation of ensembles designed to target
specific weather threats is potentially large. Further in-
vestigation of the potential value of humans being part
of the ensemble process is strongly recommended, even
if the end result is to learn how forecasters can provide
real-time input into an automated ensemble generation
system. We still have a lot to learn about how to create
ensembles for short-range forecasts of high-impact
weather, and we need to make better use of the skill
and experience of human forecasters in this learning
process.
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