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PROBLEM DESCRIPTION

The major part of the earth’s surface over land is dominated by complex terrain. These
surface elements represent only negligible protuberances when they are compared with
the earth’s radius. However, since the troposphere is only a thin layer with a depth of
aproximately 12 km in direct contact with the surface, it is well understood the important
role that relief elements play in the processes that occur in that atmospheric layer. Relief
elements may exibit a wide range of relevant scales, from small hills to high mountains,
and shapes, from almost circular mountains to long barriers. With a planetary scale,
the main mountain ranges are even decisive for the world climates. But in general, any
mountainous area determines the local meteorology of that region and also supposes an
additional degree of complexity for a good forecasting or meteorological study.

Meteorological circulations induced by mountainous terrain may be divided into two
categories: those associated with thermally developed wind systems, such as slope or
valley winds, and those induced mechanically as a consequence of airflow over mountains,
such as blocking, flow splitting, mountain waves, foehn, downslope winds, wave breaking,
turbulence etc. This variety of phenomena has important relevance in practical topics, as
for example the effects of rugged terrain on diffusion of pollutants for air quality studies,
and its understanting supposes a valuable help for forecasters which are daily involved in
the prediction of winds over relief systems, downslope windstorms, formation of clouds
and thunderstorms by induced lifting, and many other examples.

In particular, a special attention has been paid on mountain waves and associated
phenomena in last decades. This is one of the most developed aspects in the ambit
of mesoscale meteorology and a good test for any mesoscale numerical model. With
the support of observational campaigns, several theoretical studies dealing with linear
mountain waves have allowed to understand the regime imposed by topography on the
airflow. However, real cases are in fact produced by non linear flows and theory must
be completed with numerical studies. These studies help to better describe the different
regimes and transitions that occur mainly as functions of topographic dimensions and
atmospheric background wind and stability, although some other effects are also important
to define the mountain induced circulation. For example, mountain shape, air moisture,
earth’s rotation, diurnal cycle and boundary layer effects.

This work contributes precisely to this context, since the role of vegetative surfaces
through its associated evolving boundary layer is investigated. For a two-dimensional
idealized case, the influence of vegetation cover on the development and structure of
mountain waves is analysed using a meso-β numerical model. The model includes a
detailed representation of surface fluxes and friction which evolve in time as the incoming
solar radiation interacts with the soil and vegetation. Simulations with different types of
vegetation of a zonal flow over a north-south oriented ridge are presented and examined.
The intensity of downslope winds and turbulent kinetic energy structure appears to be
especially sensitive to the presence and type of vegetation. Model predicted rainfall is
also examined, indicating an enhancement when mountainous areas are covered by conifer
forest.
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Chapter 1

INTRODUCTION

1.1 Atmospheric processes over complex terrain

The orography is an essential aspect to determine the meteorology in many areas
of the globe. In fact, the climatic characteristics over land regions can not usually be
explained whithout considering the orographic configurations of that region. The pres-
ence of mountains with their endless varieties of passes, valleys, and slopes provides a
breeding ground for a wide range of meteorological phenomena. As a consequence, any
serious forecast for a mountainous region must incorporate some schematic model which
represents the perturbations induced by the orography.

The influence of orography is not only restricted to local or regional meteorology.
Orographic flows encompass all scales of motion and the planetary general circulation
including the energy, momentum, heat, and moisture balances is significantly affected by
orography. Nevertheless, the atmospheric processes described in this section as well as
the type of mountain waves subject of this work, are representative of spatial scales of
the order of 100 km and temporal scales of several hours (Mesoscale, Orlanski 1975).

These spatial scales may be completely unobserved by the present synoptic-scale ob-
servational network. As a consequence, the development of intensive field experiments
has a great importance to explore and understand the action of orography in the airflow.
In situ measurements by ground-based measuring systems and by balloons and aircfraft
have traditionally been the mainstays of field programs. As an example, the PYREX
experiment (Bougeault et al. 1990), was designed to study the dynamical influence of the
Pyrenees.

The two most important mechanisms that force orographic flows are thermal and
mechanical in nature. Thermal circulations are intimately related to differential heating
and cooling associated with diurnal insolation. Mechanical effects are the consequence of
an incident airstream that is constrained to follow the topographic surface profile against
the restoring forces due to stability. The energy associated with that disturbance is
usually carried away from the mountain by steady gravity waves (mountain waves). For
small mountains or when the air stability is low, the flow becomes nearly parallel to
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the topography. However, for high mountains and stable stratification, the flow exhibits
blocking and large-amplitude wave activity.

In a local sense, blocking or flow retardation as it approaches the barrier, can be
described as follows: as the stable, low-level air is pushed up the windward slope, it
becomes potentially colder than the “ambient” air at that level (Fig. 1.1). This creates
a relative high pressure next to the slope, decelerating the flow coming up the slope and
often causing it to flow back down the hill. On the other hand, a relative low pressure
appears over the lee slope. This configuration of pressure anomalies is known as the
orographic dipole.

Large-amplitude mountain waves can be associated with regions of clear-air turbulence
that pose a hazard to aviation. At the surface, they produce appreciable downslope winds.
Winds sweeping down the slopes of mountain ranges may produce low relative humidities
and temperature increases of several degrees in a matter of minutes (foehn effect), as
for example the westerly Foehn of the Alps and the Chinook on the eastern slope of the
Rockies; or can be cold, for example the Bora, a severe northeasterly downslope wind off
the mountains along the Adriatic coast of Yugoslavia.

Similar to surface water waves, lee waves may overturn and be associated with ex-
tremely turbulent conditions and downslope windstorms, ranging from a temporary dis-
ruption of daily life to destructive consequences. The most spectacular case to be obser-
vationally well-documented ocurred on 11 January 1972 along the eastern slope of the
Colorado Rockies. On this day, Boulder (Colorado) experienced one of its most severe
downslope windstorms with surface winds gusting as high as 220 km/h. Two periods of
several hours each contained frequent gusts over 180 km/h. Investigation of the associated
mountain waves by Lilly and Zipser (1972) and Lilly (1978) revealed the presence of the
powerful wave system depicted in Fig. 1.2.

Most real mountains are highy three-dimensional, providing an additional degree of
freedom to the flow with respect to the topographic barrier. One of the most obvious
effects of three-dimensional topography as an obstacle to stably stratified flow is the
direct deflection of the flow around the mountain (flow splitting), which is associated
with recirculations in the lee. Over complex topography, the flow can be channeled and
accelerated along the valleys.

Under appropiate synoptic flow, the dynamical influence of a large mountain range
is responsible of well known “regional winds”. In the mediterranean area, for example,
Tramontana from the Gulf of Lyon and Cierzo along the Ebro valley by northern flow, and
Autan in the south of France by southern flow, are intense winds caused by the Pyrenees
due to effects of channeling.

Nevertheless, the more prevalent situation in mountainous areas is dominated by gentle
breezes, typically less than 10 m/s. These milder winds are of thermal origin. The pressure
gradient force that provides the driving mechanism arises from the difference between the
temperature of the air above heated slope by solar radiation during day (or cooled by
longwave radiation into space during night), and that of the free air at the same level.

Two classifications are generally recognized: Slope winds andValley winds (see Fig. 1.3),
although both wind systems tend to interact. Slope winds, induced by temperature dif-
ferences between the air adjacent to the slope and the ambient air outside the slope
boundary layer, blow parallel to the inclination of the sidewalls, typically upslope by day
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and downslope by night. Valley winds blow parallel to the longitudinal axis of a valley as
a result of temperature differences that form along the valley or temperature differences
between the air in the valley and the air at the same height over the adjacent plain.

In contrast to strong winds and increased turbulence that sweep out and disperse
pollutants, low intensity orographic winds can transport harmful gases and particulate
matter en masse. Since the weaker wind systems are pervasive over much of the year, the
problem of anthropogenic pollution is exacerbated over mountainous terrain. For example,
the following air pollution situations (see Fig. 1.4) can lead to increased concentrations
in rugged terrain (Hanna and Strimaitis 1990):

• Plume inpingement on high terrain. High pollutant concentrations occur in stable
conditions when the plume trajectory cannot lift over the elevated terrain.

• Pooling in valleys. It occurs when the airflow in a valley is cut off from the airflow
above the terrain. An inversion is frequently present at ridgetop. Pollutants released
into the air at the valley floor can accumulate or “pool” due to the limited dilution
rate and the resistance to vertical diffusion.

• Drainage toward population centers. At night, if synoptic winds are light and there
is strong radiational cooling, persistent downslope drainage winds can develop such
that pollutants may be carried downstream toward population centers.

• Persistence due to channeling. Any synoptic wind direction with a component along
the valley axis will lead to a channeled wind along the valley. Such flow can last for
several days, ceasing only with a change in the synoptic pattern. The persistence of
the flow leads to long-term pollutant concentration in the valley environment.

On the other hand, thermal and mechanical forcing give rise to convective and strati-
form clouds. As a consequence, the prediction of cloudiness and thunderstorms formation
must often be formulated in connection with the orographic systems.

Clouds are produced when air becomes saturated and water condenses. Air can be
brought to saturation by evaporation from water sources, by cooling by nonadiabatic
processes, or by expansion from adiabatic lifting. Mountains disrupt basic airflows to
force ascending air currents and therefore can initiate clouds and define the precipitation
patterns. In particular, with appropiate large-scale conditions (conditionally unstable
temperature lapse rate and advection of moisture by the larger-scale flow), mountain
circulations provide the initiation or triggering mechanism for thunderstorms. Two factors
must be considered in assesing the ability of a mountain range to produce clouds under a
given flow regime:

• The properties of the atmosphere, which determine the lifting condensation level
(LCL) where air must be lifted to reach saturation, and the level of free convection
(LFC) where saturated air becomes positively buoyant.

• The characteristics of the flow disturbance, which determine the amount of lifting
provided.
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However, the two factors are not independent because characteristics of the atmosphere
(especially its stability) affect how much lifting the flow will be able to produce, and lifting
destabilizes the atmosphere.

If air is lifted to its LCL but not to its LFC, stable or stratiform clouds will be produced.
If air is lifted to its LFC, unstable or cumuliform clouds will be produced.

Thunderstorms formation and precipitation maxima tend to be related with preferred
areas of the topography (sometimes referred to as “hot spots”) where the lifting induced
by the orography is significant. The kinds of lift that a mountain can provide are direct
(forced orographic ascent when flow encounters an obstacle); or indirect, as a consequence
of blocking, waves or flow deflection (obstacle effects), or when mountain slopes are heated
by radiation and develop thermally forced upslope winds. Figure 1.5 summarizes the three
types of cloud initiation mechanisms (Banta 1990).

Forced ascent of moist air up the slopes of a mountain barrier can lift the air directly
to its LCL or its LFC when such quantities at some inflow level are near or below the
level of the ridge top (Fig. 1.5a).

Upslope and up-valley wind systems blow toward the peaks, producing convergence
and updrafts near the peaks, where clouds can eventually form (Fig. 1.5b). Depending
on external factors such as ridgetop wind direction, cloudiness, and soil moisture, certain
areas repeatedly and perhaps predictably act as triggers (Banta 1990).

Obstacle (aerodynamic) effects (Fig. 1.5c) include effects such as upstream blocking,
gravity waves, upward motion caused by the turbulent wake, and convergent flow down-
stream of the mountain range. The flow retardation due to blocking effects results in
horizontal mass convergence ahead of the obstacle, and upward air motion. The direct
deflection of low-level flow can produce regions of convergence and divergence that lead to
updrafts and subsidence, respectively. Two examples of low-level convergence produced
by flow deflection are depicted in Fig. 1.6. Upward-motion branches of gravity waves
(mountain waves) may be associated with stationary stable clouds. Gravity waves can
act together with organized solenoidal, slope-flow circulations and contribute significantly
to storm development (Tripoli and Coton 1989).

The next section focuses on the problem of mountain waves. The predictions given
by two-dimensional linear theory for small-amplitude mountain waves are presented and
discussed. The discussion is extended to non-linear regimes (appropiate for most real
mountains), emphasizing the valuable role played by numerical models in the study of
realistic mountain waves.

1.2 Two-dimensional mountain waves

A disturbance is created when stably stratified air is forced to rise over a topographic
barrier. The energy associated with that disturbance is usually carried away from the
mountain by internal gravity waves, specifically referred to as mountain waves.

The basic forces that give rise to internal gravity waves are buoyancy restoring forces.
If an air parcel is displaced vertically in a stably stratified flow, the buoyancy difference
between the parcel and its environment will produce a restoring force, accelerating the
parcel back toward its equilibrium position. In the absence of pressure gradient forces and
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mean flow, the parcel will oscillate along a vertical axis through its equilibrium position
at the Brunt-Väisäla frecuency

N =

(
g

θ0

dθ0

dz

)1/2

(1.1)

where θ0 is the vertically varying mean-state potential temperature.
If the parcel is constrained to oscillate along a path tilted off the vertical axis by

an angle φ, buoyancy forces will produce an identical type of oscillatory motion at the
reduced frequency N cosφ. The pressure gradient and buoyancy forces in an internal
gravity wave act in concert to keep air parcels oscillating along a path slanted off-vertical
at the angle that matches the frequency of the wave to the resonant frequency N cosφ.
However, it is not possible to support buoyancy driven parcel oscillations at frequencies
greater than the Brunt-Väisäla frecuency.

A schematic diagram of an internal gravity wave derived from small-amplitude armonic
perturbations about a basic state at rest in a Boussinesq atmosphere (Durran 1990) is
plotted in Fig. 1.7. The phase of the wave is constant along the slanting, dashed, and
solid lines. Velocity and pressure perturbations (u,w and P ) have extrema along the solid
lines, where bouyancy perturbations are zero. Buoyancy perturbations have extrema, and
velocity and pressure perturbations are zero along the dashed lines. The perturbation
velocities, indicated by small arrows in the figure, are allways parallel to the lines of
constant phase. Large heavy arrows indicate the direction of phase propagation and the
group velocity. With the superposition of a non zero horizontal mean flow, the actual
air-parcel trajectories would not follow the slanted paths in Fig. 1.7, but rather wavy
lines.

Owing to the nature of the disturbance generator, mountain waves are essentially
stationary and propagate energy upwards. However, the momentum flux associated with
its internal structure is directed downwards and mountain waves exert a drag on the
upper levels of the atmosphere; indeed, the cumulative worldwide effect of mountain-
wave drag is believed to have a significant influence on the strength of the mean zonal
circulation. It is not strange, therefore, that many efforts have been directed to include
some representation (parameterization) of this effect in large-scale numerical models. Drag
parameterization schemes based on two-dimensional linear theory have been developed
by McFarlane (1987) and Palmer et al. (1986) among others, and other works have dealt
with the search of a more realistic parameterization taking into account the enhancement
in wave drag under non-linear regimes or the extra degrees of freedom allowed for by
three-dimensional orography (Baines and Palmer 1990).

On the other hand, large-amplitude mountain waves can also be associated with regions
of clear-air turbulence (CAT) and strong surface winds that blow down the mountain along
its lee slope; wind gusts in excess of 50 m/s have been measured in extreme events (see
Fig. 1.2).

The orographic forcing on the airflow is usually studied as function of nondimensional
numbers. The most important number is the nondimensional mountain height ĥ, or
inverse of the vertical Froude number Fr:

ĥ =
1

Fr
=
Nh

U
,
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where h is the height of the mountain, U is the basic flow speed of the unperturbed
atmosphere and N is the Brunt-Väisäla frequency defined by Eq. 1.1 as a measure of the
atmospheric stability upstream of the mountain.

The Froude number characterizes the non-linearity of the disturbance. For high values
of Fr (� 1), linear theory can give a good aproximation to the mountain induced flow.
However, strong non-linear effects associated with upstream blocking and wave breaking
in two-dimensional and three-dimensional flows, and with splitting of the flow around the
mountain in three-dimensional cases, arise for sufficiently low Froude numbers.

It should be noted that a real atmosphere has typically a complex vertical structure
for U(z) and N(z), and the introduction of a single Froude number based on constant
profiles for U and N is not possible. Even in the linear limit, analytical solutions are not
possible for atmospheres with complex structure.

Simple arguments from 3-D linear theory, as given by Smith (1988, 1989a), suggest
that, in the transition from high to low Froude number, the flow is subject to two opposing
effects: (i) an increase in wave amplitude, leading to wave breaking aloft, downstream of
the mountain; and (ii) a supression of wave activity with the splitting of the flow around
the mountain.

A nondimensional number measuring the three-dimensionality of the obstacle is the
aspect ratio ay/ax. In the simplest case in which the topography is symetric and the basic
current is directed along some of the axis of symetry, ax represents a characteristic width
scale along that direction and ay is the width scale along the perpendicular direction.
The presence and competence of regimes (i) and (ii) above mentioned make the three-
dimensional problem more complicated, and this will not be treated here. That is, we
are interested in the two-dimensional case of an infinite mountain ridge with ax = a and
ay =∞. Rigorously, another constraint to be applied in the two-dimensional hypothesis
is that the Rossby number Ro = U/fa (f: Coriolis parameter) is large enough to neglect
the Coriolis force.

Another important nondimensional number, which characterizes the validity of the
hydrostatic aproximation, is Na/U (inverse of the horizontal Froude number). If that
number is high (� 1), the horizontal scale of the perturbation is appreciably larger than
its vertical scale and the hydrostatic aproximation is valid. For small values of the nondi-
mensional number, nonhydrostatic effects should be considered. Although nonhydrostatic
effects are also discussed in the presentation, the study developed in this work lies in the
ambit of β-mesoscale meteorology and treats only with hydrostatic mountain waves.

1.2.1 Linear theory

Linear solutions for small-amplitude mountain waves that strongly resemble observed
waves have been obtained and discussed in previous works (Queney et al. 1960; Smith
1979; Gill 1982; Durran 1986). Of course, analytical solutions can be only obtained for
idealized terrain profiles and simple atmospheric vertical structures (uniform properties or
atmospheres structured in a few uniform layers). We will focus our discussion for uniform
basic flow U and stability N .

For an inviscid, adiabatic and Boussinesq atmosphere, the two-dimensional linearized
governing equations derived from stationary small-amplitude perturbations about the
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hydrostatically balanced basic-state can be reduced to a single equation for the vertical
velocity:

∂2w

∂x2
+
∂2w

∂z2
+ l2w = 0, (1.2)

where l is the Scorer parameter (l2 = N2/U2).
Solutions to Eq. 1.2 may be written in the form

w = Re
[
A expi(kx+mz)+B expi(kx−mz)

]
,

where Re denotes the real part, A and B are complex coefficients, and substitution in
Eq. 1.2 gives

m = (N2/U2 − k2)1/2.

For a pure sinusoidal terrain profile zs = h cos kx, the solution for w(x, z) can be easily
obtained imposing appropiate boundary conditions (Durran 1990):

1. At the lower boundary, the velocity normal to the topography must vanish. This
condition is approximated, to the same order of accuracy as the linearized equations,
by

w(x, 0) = U
∂zs
∂x

.

2. As z → ∞ the “radiation condition” is applied, which requires that all waves at an
arbitrarily great height above the mountain must be transporting energy away from
the mountain.

The above conditions require B = 0 and A = iUhk, leading to the solution

w(x, z) =

{ −Uhk exp−µz sin kx, Uk > N
−Uhk sin(kx+mz), Uk < N

(1.3)

where µ is the real number (k2 −N2/U2)1/2.
In the case Uk > N the waves decay exponentially with height (evanescent waves) and

the wave crests are aligned vertically. The waves decay away from the forcing because the
intrinsic frequency exceeds the Brunt-Väisäla frequency and there is no way for buoyancy
restoring forces to support the oscillation. In the case Uk < N , buoyancy restoring forces
can support the oscillation. The waves propagate vertically without loss of amplitude and
the wave crests tilt upstream with height at an angle φ = cos−1(Uk/N).

The solution to Eq. 1.2 for a more realistic terrain profile as an isolated ridge requires
the use of Fourier transforms. Each component of the Fourier transformed vertical velocity
w̃(k, z) must satisfy the Fourier transform of the governing equation 1.2

∂2w̃

∂z2
+

(
l2 − k2

)
w̃ = 0. (1.4)

The solution to Eq. 1.4, subject to appropiate upper and lower boundary conditions,
is

w̃(k, z) = ikUz̃s(k) exp[i(N
2/U2 − k2)1/2z]. (1.5)
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This equation is the complex analog of Eq. 1.3; therefore, each component w̃(k, z) of
the transformed vertical velocity is identical to the velocity forced by an infinite series of
sinusoidal ridges having wavenumber k and amplitude z̃s(k) (k-component of the Fourier
transformed topography). Thus, the previous discussion based in the relation beween
Uk and N is also applicable in terms of w̃(k, z). The only complication arises from the
requirement that after w̃(k, z) is determined, the total vertical velocity w(x, z) must be
obtained by computing an inverse Fourier transform.

Queney (1948) calculated solutions for the waves generated by the “Witch of Ag-
nesi” terrain profile (this bell-shaped function is commonly used in mathematical physics
because of its simple Fourier transform):

zs =
ha2

a2 + x2
. (1.6)

In our problem, the Fourier transform of the terrain profile determines the relative
weight attached to each individual wavenumber according to Eq. 1.5. For a very narrow
mountain, Ua−1 � N ; the profile is dominated by wavenumbers greater than N/U ,
and the mountain primarily forces evanescent waves (Fig. 1.8a). For a wide mountain
Ua−1 � N ; the dominant wavenumbers are less than N/U , and the waves propagate
vertically with lines of constant phase tilting upstream (Fig. 1.8b).

The wide mountain limit is equivalent to the hydrostatic limit. It should be emphasized
the characteristic feature of hydrostatic mountain waves: wave crests are only present in
the air flowing over the mountain (see streamlines in Fig. 1.8b). Additional crests appear
downstream from the mountain (Queney 1948) if nonhydrostatic effects are significant
(Ua−1 ∼ N).

Since the flow velocity is given by the gradient of the streamlines, Fig. 1.8b serves
also to show the general wind structure for hydrostatic mountain waves. Alternate tilted
regions of enhanced and decreased wind speed exist over the barrier, and in contrast with
the upslope, the lee of the mountain is affected by appreciable winds at low levels. As a
consequence of the upstream tilting of the wave, the vertical flux of horizontal momentum
averaged over the mountain is directed downward for all z, since the strongest horizontal
winds occur where the vertical velocity is negative.

1.2.2 Nonlinear effects. Role of numerical models

The previous linear solution for the two-dimensional mountain wave shows that the
height of the mountain plays only the role of an amplitude factor. However, when the
height of the mountain is increased (Fr decreases), the wave amplitude enhances and
nonlinear interactions are important. In particular, for sufficiently high obstacles the flow
may be characterized by:

• Breaking. High mountains can force internal waves of sufficient amplitude to produce
flow stagnation aloft over the lee of the mountain, leading to wave breaking. Beyond
that critical point there is even overturning of the flow and the temperature profile
is unstable in the breaking region. Breaking enhances the wave drag, develops
important turbulence in the middle troposphere, and is reflected at the surface with
downslope windstorms.
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• Blocking. For still higher barriers (smaller Fr), the flow decelerates enough to
produce a second point of stagnation on the windward slope. In the case of three-
dimensional mountains, the stagnation would be accompanied by flow splitting.

As interpreted by Smith (1989b), stagnation is associated with increasing pressure
along a streamline caused by lifting and positive density anomalies aloft.

By definition, linear theory is restricted to the study of disturbances created by small
mountains (Nh/U � 1). Therefore, finite-amplitude mountain waves and the above
effects which appear for Nh/U ∼ 1, do not belong to its domain of validity.

The simplest theoretical model to solve the problem of two-dimensional finite-amplitude
mountain waves was developed by Long (1953). He showed that there exists a simple
steady state solution for the fully nonlinear problem of stratified Boussinesq flow over
an obstacle of finite height. When the incident flow has constant static stability N and
horizontal velocity U , the streamline deflection field satisfies the same linear Helmholtz
equation as does that for infinitesimal perturbations. In the Boussinesq framework this
equation takes the simple form

∂2η

∂x2
+
∂2η

∂z2
+
N2

U2
η = 0, (1.7)

where η(x, z) = z − z0 is the streamline deflection from its far upstream, undisturbed
height z0.

In contrast with the linear theory, where the lower boundary condition is imposed as
η(x, z = 0) = zs(x), Long’s equation must be solved with the correct boundary condition

η[x, z = zs(x)] = zs(x) (1.8)

in order to account effectively for the nonlinear effects in the solution.
Analytical solutions of the Long’s equation 1.7 with the exact nonlinear boundary

condition 1.8 exist for some particular topographies such as semi-circular and semi-elliptic
terrain profiles. For more realistic profiles, the equation must be solved numerically by
spectral, iteratives techniques (Bacmeister 1987; Laprise and Peltier 1989). Miles and
Huppert (1969) obtained the value ofNh/U = 0.85 as the critical value for the overturning
of the streamlines (wave breaking) of hydrostatic waves launched by flow over a mountain
with the “Witch of Agnesi” shape. The nonhydrostatic effets tend to increase the critical
height necessary to develop the unstable region in altitude (Bacmeister 1987).

However, as noted by Smith (1977), the assumption of constant U and N in the Long’s
model places a special constraint on the nonlinear interactions possible in steady flow, and
caution should be exercised in generalized the description of finite-amplitude mountain
waves to more realistic atmospheric profiles. As concluded by Durran (1986) from a series
of simulations with an atmosphere structured in two layers, the sensitivity of the solution
to nonlinear processes is greatly enhanced by the presence of an interface of U and N .

However, to account for structured atmospheres for analytical purposes is very difficult.
Thus, the use of numerical models has a great importance in the study of finite-amplitude
mountain waves and is essential to develop or confirm any theoretical model of strong
nonlinear regimes associated with wave breaking, downslope windstorms and blocking.
Realistic atmospheric and terrain profiles can be easily introduced in a numerical model,
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and the sensitivity of the orographic disturbance in response to certain control parameters
can be isolated by performing several numerical simulations. By this process, numerical
models are a key instrument to fill out the regime diagrams of the interaction flow-
topography for a complet range of atmospheric profiles and topographic dimensions.

On the other hand, the study of the role exerted by some secondary factors, such as
earth’s rotation, diabatic processes, viscosity, diffusion, turbulence, atmospheric moisture
and boundary layer effects (the last two form the basis of this work), can be only assumed
with the aid of numerical models.

1.3 Scope of the study

In recent years, studies have been carried out dealing with the influence of soil and
vegetative characteristics on the development of mesoscale circulations. These studies
have emphasized the important role played by soil texture through its influence on surface
moisture availability, but have indicated that for soils with an adequate water supply,
sufficiently dense vegetative cover becomes the dominant surface factor in the evolution
of the planetary boundary layer (PBL) (Pinty et al. 1989). However, soil properties
must be taken into account in cases of sparse vegetation or when the soil is subjected
to a water deficit. In order to isolate the effects of such surface inhomogeneities, those
simulations have emphasized the simplest conditions: flat terrain, clear sky situations
and/or an unperturbed synoptic environment. With those conditions, thermally induced
circulations such as sea breezes or circulations associated with differential heating between
zones of different soil or vegetative properties have been simulated (Mahfouf et al. 1987;
Pinty et al. 1989).

On the other hand, idealized or real cases of flows over complex terrain have been
used in numerical models to describe atmospheric perturbations induced by orography.
Simulations with simplified orography and atmospheres of linear and non-linear flows over
mountains have extended the theoretical concepts of mountain waves and have proved
useful in testing the correctness and sensitivity of the model approach (e.g. Klemp and
Lilly 1978; Anthes and Warner 1978; Mahrer and Pielke 1978; Nickerson et al. 1986).
Successful simulations of the well documented 11 January 1972 windstorm in Boulder,
Colorado (see Fig. 1.2), have been carried out (e.g. Klemp and Lilly 1978; Durran and
Klemp 1983), and have indicated that the inclusion of surface frictional effects gives
a more realistic development and evolution of downslope winds (Richard et al. 1989).
The damping effects of atmospheric water vapor and liquid water on the development of
mountain waves have also been considered (Durran and Klemp 1983); however, sensitivity
studies have not been presented which demonstrate the response of mountain waves to
different specifications of surface properties.

In the present work, two-dimensional numerical experiments are carried out using a
meso-β model with a detailed representation of the soil-atmosphere interface to study
the effects of different vegetative covers on the dynamical and thermodynamical structure
of hydrostatic atmospheric waves induced by a bell-shaped ridge. Surface fluxes and
model-predicted rainfall are also examined.

Next chapter contains a detailed description of the atmospheric numerical model as
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well as of the associated sub-models which parametrize cloud microphysics, radiative
fluxes, surface fluxes of momentum, heat and moisture, and surface balances of energy
and water. Chapter 3 presents the particular conditions for the individual experiments and
the results of the simulations including the wave structure, an examination of different
terms comprising the energy balance at the surface, as well as an examination of the
surface pressure drag and the model-predicted rainfall. The work is finally closed with
the conclusions.
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Chapter 2

MODEL DESCRIPTION

The atmosphere is a hydro and thermodynamical system that can be analysed by
equations which contain time derivatives and therefore allow potential prognostic abilitiy
of the future states. The essential governing equations are the momentum or dynamical
equations and the conservation relations for mass (continuity equation), entropy (thermo-
dynamic equation) and water vapour (humidity equation). The whole system of equations
is closed by the equation of state which in the case of the atmosphere is accurately rep-
resented by the ideal gas law; but other formulations arise usually to parameterize some
secondary processes such as radiative fluxes across the atmosphere, turbulence, micro-
physical transformations between water constituents, latent and sensible heat fluxes at
the surface, loss of momentum due to roughness, etc.

Unfortunately, the treatment of that system of equations is not simple and only for
idealized cases analytical solutions exist. However, for many purposes (for example to
dessign a numerical model), the primitive equations can be simplified and/or reduced by
neglecting some irrelevant terms. This is done through a scale analysis of the different
terms based on the spatial and time scales of the atmospheric process in study. With
such technique, terms with appreciably smaller magnitudes than the leading terms can be
supressed. Among the typical aproximations sometimes valid, there are the geostrophic
aproximation which balances the Coriolis force with the pressure force in the horizon-
tal motion equations, the hydrostatic aproximation which balances the vertical pressure
gradient with the gravitational force, and the inviscid, adiabatic, anelastic or Boussinesq
assumptions. The characteristic scale of the simulated atmospheric system determines
also the necessity and degree of complexity of the parameterizations of subgrid scale
physical processes such as those mentioned in last paragraph.

The real atmosphere manifests a wide range of motion scales, i.e, many processes with
different characteristic wavelengths and periods. The classical division of that spectra,
which extends from ultra-long waves of climatological scale to little eddies produced by
roughness in the scale of centimetres and fractions of second, is given by the classifi-
cation of macro, meso and micro-scales. The macroscale is basically quasi-geostrophic
and hydrostatic. The mesoscale is non-geostrophic and hydrostatic, and the microscale is
non-geostrophic, non-hydrostatic and turbulent. Spectral analysis of many meteorolog-
ical observations suggest a minimum of energy density for the mesoscale, whereas both
microscale and macroscale represent a maxim (Atkinson 1981). Nevertheless, mesoscale
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circulations are very important as a vital link in the atmospheric energy cascade from
very large to very small scales (Robinson 1967).

The three motion scales are of course subdivided in other subescales. In the case of
the mesoscale, the subclassification of meso-α (fronts, hurricanes . . . ) with horizontal
scales between 200 and 2000 km, meso-β (for example mountain produced disturbances)
with scales between 20 and 200 km, and meso-γ (thunderstorms, urban effects . . . ) with
scales smaller than 20 km but greater than 2 km, is often defined.

The numerical model presented in this chapter, used as the main research tool in
the development of the study, is a meso-β model and therefore is appropiate to simulate
mountains waves. Furthermore, the parameterizations of short and longwave radiation,
surface fluxes, warm microphysics and planetary boundary layer (PBL), allows to study
the effect of diurnal cycle, air moisture and surface characteristics. In fact, the same model
has been used in previous works to simulate phenomena such as orographic enhancement
of rain and clouds (Nickerson 1979; Richard et al. 1986), mesoscale flows induced by
vegetation or soil moisture inhomogeneities (Mahfouf et al. 1987a; Pinty et al. 1989),
downslope windstorms (Richard et al. 1989), mountain waves (Nickerson et al. 1986;
Richard et al. 1985; Romero et al. 1995), or the breeze circulation (in Florida, Mahfouf
et al. 1987b; in Mallorca, Ramis and Romero 1995).

The primitive-equation model is hydrostatic and was initially described by Nickerson
and Magaziner (1976). A more complet version is presented in Nickerson et al. (1986).
Model equations are expressed in a terrain-following coordinate system (see Fig. 2.1),
where the vertical coordinate ν is related to the classical σ pressure coordinate (σ =
(P − Pt)/(Ps − Pt) = (P − Pt)/π) by the expression

σ = (4ν − ν4)/3,

where ν and σ take values from 0 (upper boundary of pressure Pt) to 1 (ground). The
vertical coordinate also satisfies the condition that dσ/dν must be finite over the entire
domain and must be equal to zero at the lower boundary to assure second order accuracy
in the discretization scheme (De Rivas 1972). Terrain-following coordinates are very
convenient in domains with complex terrain. They facilitate the treatment of the lower
boundary since the ground is a surface of constant vertical coordinate. In particular, the
ν coordinate has the advantage of allowing for a high resolution of the PBL in spite of
working with an uniform grid.

The governing equations and physical parameterizations are presented in next sections
(see Appendix 1 for symbols). Although the simulations are two-dimensional, the three-
dimensional version of the model is presented. The model becomes automatically two-
dimensional by eliminating all derivatives in the y-direction and the Coriolis force in the
motion equations (f → 0).

2.1 Dynamical equations

The prognostic equations for the horizontal momentum variables (u,v) have the form:

∂πu

∂t
= −∂πuu

∂x
− ∂πuv

∂y
− 1

σ′
∂σ′πuν̇
∂ν

+fπv+
(
φ− RvT

∗σπ
P

)
∂π

∂x
− ∂πφ

∂x
+Fπu+Dπu (2.1)
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∂πv

∂t
= −∂πvu

∂x
− ∂πvv

∂y
− 1

σ′
∂σ′πvν̇
∂ν

−fπu+
(
φ− RvT

∗σπ
P

)
∂π

∂y
− ∂πφ

∂y
+Fπv+Dπv. (2.2)

In the (x, y, ν) coordinates the continuity equation is written

∂π

∂t
= −∂πu

∂x
− ∂πv

∂y
− 1

σ′
∂σ′πν̇
∂ν

.

Since the boundary conditions on the vertical velocity ν̇ are:

1. At the surface: ν̇ = 0 (the flow must be along the surface, i.e normal component
zero).

2. Top of the domain: ν̇ = 0 (this is a reasonable condition when the pressure at the
upper boundary Pt is not greater than 100 hPa).

then the continuity equation can be vertically integrated over part of the atmosphere to
give the vertical velocity ν̇:

ν̇ = − 1

πσ′

∫ ν

0
σ′

(
∂π

∂t
+
∂πu

∂x
+
∂πv

∂y

)
dν, (2.3)

or over the entire atmosphere to give the temporal evolution of the surface pressure:

∂π

∂t
= −

∫ 1

0

(
∂πu

∂x
+
∂πv

∂y

)
σ′ dν. (2.4)

Finally, the geopotential φ is calculated from the hydrostatic equation:

∂φ

∂P̂
= −Cpθ(1 + 0.61qv). (2.5)

2.2 Thermodynamical equations

An entropy variable S = πH is defined, where

H = ln
(
T

P̂

)
+
Lvqv
CpT

apart from a small correction factor which is proportional to the mixing ratio of liquid wa-
ter present in the model, is conserved during both dry and wet reversible adiabatic trans-
formations (Dufour and Van Mieghem 1975). The present case consists of an open system
in which the condensation products do not necessarily remain in the air if precipitation
forms. However, the entropy variable is aproximately conserved in this pseudoadiabatic,
pseudoreversible system. Its predictive equation is:

∂S

∂t
= −∂Su

∂x
− ∂Sv

∂y
− 1

σ′
∂σ′Sν̇
∂ν

+ FS +DS + SS. (2.6)
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The other predicted thermodynamic variable is the moisture variableW = π(qv+qcw),
in which transformation between mixing ratios of water vapour qv and cloud water qcw
when saturation occurs is taken into account:

∂W

∂t
= −∂Wu

∂x
− ∂Wv

∂y
− 1

σ′
∂σ′Wν̇

∂ν
+ FW +DW + SW . (2.7)

The source-sink terms SS and SW in Eqs. 2.6 and 2.7 will contain, respectively, ra-
diative processes (short and long wave), and transformations between rainwater and the
moisture variable W (loss by autoconversion and accretion, and production by evapora-
tion). Parameterizations of these processes are explained in section 2.3 and 2.6.

Temperature and cloud water mixing ratio are not explicitly predicted by the model,
but are diagnosed from the predicted values of S and W (Nickerson 1979). If the air is
saturated, the mixing ratio is a known function of temperature, and the definition of S
becomes a transcendental equation for the temperature Ts, corresponding to saturation
with respect to liquid water. Excess vapour from the saturation value is converted into
cloud water. If on the other hand the air is unsaturated, cloud water is zero, the vapour
mixing ratio in the definition of S is replaced by W/π and the temperature is solved for
directly, using the temperature at the previous time step to account for the temperature
dependence of the latent heat.

In summary, Ts and qvs, the saturation temperature and its corresponding vapour
mixing ratio, are computed from the value of S using the Newton-Raphsonn technique.
Temperature and mixing ratios of water vapour and cloud water are then arrived at in
accordance with the following criteria:

qv = qvs
qcw = W/π − qvs
T = Ts


W > πqvs

qv = W/π
qcw = 0
T = Tuns


W ≤ πqvs

The saturation vapor pressure with respect to water, es, used to compute qvs, is taken
from Murray (1967):

es = 6.11 exp[17.27(T − 273.16)/(T − 35.86)].

2.3 Microphysical equations

Apart from cloud water which wafts around with the air, liquid water in the model
is present as rainwater, which falls through the air. Ice processes are not considered.
Separate prognostic equations are written for both rainwater mixing ratio qr and number
of raindrops concentration Nr:

∂πqr
∂t

= −∂πqru

∂x
− ∂πqrv

∂y
− 1

σ′
∂σ′πqrν̇
∂ν

+ Fπqr +Dπqr + Sπqr (2.8)
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∂πNr
∂t

= −∂πNru

∂x
− ∂πNrv

∂y
− 1

σ′
∂σ′πNrν̇

∂ν
+ FπNr +DπNr + SπNr . (2.9)

The terms Sπqr and SπNr are related to autoconversion, selfcollection, accretion, evapo-
ration and sedimentation processes. However, selfcollection affects only the concentration
of raindrops whereas accretion affects only the rainwater mixing ratio:

Sπqr = π
∂qr
∂t

∣∣∣∣∣
auto

+ π
∂qr
∂t

∣∣∣∣∣
accr

+ π
∂qr
∂t

∣∣∣∣∣
eva

+ π
∂qr
∂t

∣∣∣∣∣
sed

(2.10)

SπNr = π
∂Nr
∂t

∣∣∣∣∣
auto

+ π
∂Nr
∂t

∣∣∣∣∣
self

+ π
∂Nr
∂t

∣∣∣∣∣
eva

+ π
∂Nr
∂t

∣∣∣∣∣
sed

. (2.11)

Diffusional growth of raindrops is not included since the model does not permit su-
persaturation with respect to water. The parameterization of the above terms is based
on the assumption that rainwater is lognormally distributed with diameter; that is,

dNr =
Nr

(2π)1/2σ0D
exp

[
− 1

2σ2
0

ln2
(
D

D0

)]
dD (2.12)

is the number of raindrops in the size range D to D + dD and Nr is the total number
of raindrops. Here σ0 and D0 are distribution parameters. The lognormal distribution
adequately describes the average spectra for a number of rainfalls of several intensities
(Markowitz 1976).

If the diameter D0 is large enough so that cloud-size droplets contribute very little to
the total number concentration, the integration of Eq. 2.12 over the entire spectrum of
drops of mass πρlD

3/6 yields the following expression for qr, the rainwater mixing ratio:

qr =
Nr
ρ

(
π

6
D3

0ρl

)
exp

(
9

2
σ2

0

)
,

where ρ and ρl represent the density of air and liquid water respectively. It is also
convenient to define a mean drop diameter D̄r, which is the diameter the raindrops would
have if they were all the same size. D̄r is related to the lognormal distribution parameters
by

D̄r = D0 exp
(
3

2
σ2

0

)
.

Since there are two independent distribution parameters σ0 and D0, only one of which
can be diagnosed given qr and Nr, the microphysical system of equations is closed by
assuming a constant value for σ0 (= 0.547) and computing D̄r.

A detailed derivation of each contribution in Eqs. 2.10 and 2.11 making extensive use
of the work of Berry and Reinhardt (1973), can be found in Nickerson et al. (1986). Only
the final expressions (in mks units) to parameterize each source-sink term will be given
in this summary.
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a. Autoconversion

Autoconversion is the growth of cloud water to form rainwater. The tendency for
rainwater mixing ratio is given by

∂qr
∂t

∣∣∣∣∣
auto

= αρq2
cw,

and the corresponding expression for the number concentration of raindrops is

∂Nr
∂t

∣∣∣∣∣
auto

= 3.5× 109ρ
∂qr
∂t

∣∣∣∣∣
auto

,

where
α = 0.067{1016x

4/3
fcw(varx)

1/2 − 2.7} × {104[xfcw(varx)
1/2]1/3 − 1.2}.

In the expresion for α, xfcw is the mean mass of the cloud droplets and varx is a
variance parameter. Both are related to the size distribution of the cloud water. It is
assumed that the cloud droplets are also partitioned according to a lognormal distribution
for which the distribution parameters σ0cw and D0cw remain constant.

varx = exp(9σ2
0cw)− 1

xfcw =
ρqcw
Ncw

= πρlD̄
3
cw/6,

where the mean diameter of the cloud droplets D̄cw is

D̄cw = D0cw exp
(
3

2
σ2

0cw

)
.

The chosen values D0cw = 32.5µm and σ0cw = 0.2203 lead to a value of α = 4.

b. Accretion

Accretion is the process whereby cloud droplets are collected by raindrops. Obvi-
ously, this process affects the rainwater mixing ratio but not the number of raindrops
concentration:

∂qr
∂t

∣∣∣∣∣
accr

=
3ρqrqcw
2ρlDgr

γ2
c (Dgr, D̄cw)[υ(Dgr)− υ(D̄cw)],

whereDgr is the diameter corresponding to the predominant mass relative to the rainwater
spectrum,

Dgr =

(
6ρqr
πρlNr

)1/3

exp(3σ2
0).

For evaluation of the collision efficiency γc, the following aproximation based on Berry
(1967) and Shafrir and Neiburger (1963) is adopted:

γc(rl, p) = 1 + p+
d

pf
+

e

(1− p)g
,
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where p = rs/rl is the ratio of the radius of the small drop to the radius of the collector
drop, and

d = −27/r1.65
l

e = −58/r1.9
l

f = (15/rl)
4 + 1.13

g = (16.7/rl)
8 + 0.004rl + 1.

with the radii expressed in micrometers.
Berry and Pranger (1974) have developed an empirical expression for the terminal

velocity of the form

υ(D) =
ηRe

Dρ
, (2.13)

where Re is the Reynolds number for the airflow around the drops, and η, the dynamic
viscosity of the air, is given by the relation

η = 1.496286× 10−6 T 1.5

T + 120
.

The expressions for Reynolds number are based on the data of Beard and Pruppacher
(1969) and Gunn and Kinzer (1949):

Re =




0.0412657y − 1.50074× 10−4y2

+7.58884× 10−7y3 − 1.68841× 10−9y4 when 0 < y ≤ 175.27

exp[−2.36534 + 0.767787 ln y
+0.00535826(ln y)2 − 7.63554× 10−4(ln y)3] when 175.27 < y ≤ 107

The parameter y is given by

y =
4ρρlg

3η2
D3.

c. Selfcollection

Selfcollection is the process by which collisions between raindrops produce larger
drops. In contrast to the growth by accretion, the interacting drops are of the same size
range. The expression is

∂Nr
∂t

∣∣∣∣∣
self

= −bs(D̃,D∗)Nrρqr,

where

bs(D,D
′) =

3D2

2ρl(D3 +D′3)
γ2
c (D,D

′)[υ(D)− υ(D′)].

In the parameterization D̃ = Dgr and D
∗ = D̄r, already defined.
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d. Sedimentation

Sedimentation of Nr and qr is given by the divergence of their fluxes (driven by the
terminal fall velocity), through a unit horizontal surface:

∂Nr
∂t

∣∣∣∣∣
sed

=
∂Sn
∂z

∂qr
∂t

∣∣∣∣∣
sed

=
∂Sq
∂z

.

The fluxes are calculated as

Sn =
Nrυ(D0)

21/2σ0p
exp

[
(k2 − 1)2
4p2

]

Sq =
q0υ(D0)

21/2σ0p
exp

[
(k2 + 2)

2

4p2

]
.

For the calculation of the terminal fall velocity in terms of Reynolds number and
dynamic viscosity as expressed in 2.13, Berry and Pranger (1974) give the following ex-
pression for the Reynolds number:

Re(D) = exp[c1 + c2(ln y) + c3(ln y)2].

The constants c1, c2 and c3 take the values -3.12611, 1.01338 and -0.0191182 respec-
tively, and

y =

(
4ρρlg

3η2

)
D3 = aD3.

The other constants which appear in the expressions of Sn and Sq are given by

p2 =

(
1

2σ2
0

− 9c3
)

k2 = 3c2 + 6c3 ln(aD
3
0)

q0 =
Nrm(D0)

ρ
.

e. Rain evaporation

The evaporation rate of rainfall is given by the expression

∂qr
∂t

∣∣∣∣∣
eva

=
ρl
ρ

π

2
ASNr

[
0.572DO exp

(
σ2

0

2

)
+ 5.31× 103D2

O exp(2σ
2
0)− 4.33× 105D3

O exp

(
9σ2

0

2

)]

which combines the ventilation effect, the undersaturation S given by the expression

S =
qv

qvs − 1 ,
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and A, a thermodynamical function of pressure and temperature:

A =
1

1000(d1 + d2)
.

The parameters d1 and d2 are calculated with the expressions:

d1 =
RvTP

2.26es
(
T
T0

)1.81

and

d2 =
Lv

T (0.0243 + 8× 1015(T − T0))

(
Lv
RvT

− 1
)
.

Finally, the number of raindrops which completely evaporate during one model time
step is given by

Nreva =
1

∆t

∫ Dcrit

0

Nr
(2π)1/2σ0D

exp

(
− 1

2σ2
0

ln2 D

D0

)
dD,

where
Dcrit = (−2AS∆t)1/2.

2.4 Diffusion terms and TKE equation

In the model equations 2.1, 2.2, 2.6, 2.7, 2.8, 2.9 and 2.15, the terms noted as Dvar
(var = πu, πv, S, W , πqr, πNr, πe) represent the horizontal diffusion, which acts on the
ν-surfaces and is numerically introduced by a fourth order operator D4(var):

D4(var) = KH

[
∂4(var)

∂x4
+
∂4(var)

∂y4

]
,

where KH is a constant coefficient.
The fourth order diffusion is more selective than the second order one, and therefore

eliminates effectively short wavelength contributions that can lead to nonlinear insta-
bility (Pielke 1984, chapter 10), whereas preserves the meteorological modes of longer
wavelengths much better. Table 2.1 illustrates the different behaviour of second and
fourth order diffusion, and shows the convenience of using the fourth order representation
for the horizontal diffusion.

On the other hand, the Fvar terms of the governing equations represent the vertical
turbulent mixing. They are parameterized according to an eddy coefficient Kex:

Fvar = B
∂

∂ν

(
BKex

∂var

∂ν

)
, (2.14)

where

B = − gP

πRvTσ′ .
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The exchange coefficients Kex (Km for the momentum, Kθ for the thermodynamic
and microphysical variables and Ke for the mean turbulent kinetic energy TKE), are
calculated as functions of the TKE (one and a half order closure) and the mixing length
lk following Therry and Lacarrère (1983) and Bougeault and Lacarrère (1989):

Km = Cklke
1/2

Kθ = αTKm

Ke = αeKm.

The TKE (e) is predicted by the model through the equation:

∂πe

∂t
= −∂πeu

∂x
− ∂πev

∂y
− 1

σ′
∂σ′πeν̇
∂ν

+ πKm




(
B
∂u

∂ν

)2

+

(
B
∂v

∂ν

)2

 −

g

θv
πKθB

(
∂θv
∂ν

− γcg

)
− Cεπ

e3/2

lε
+ Fπe +Dπe, (2.15)

where the first, second and third terms on the right-hand side are the advective terms, the
fourth term is the shear-production term, the fifth is the bouyancy term and the sixth term
represents the turbulence dissipation. The constant γcg is the so-called “countergradient”
correction (Deardorff 1972), which applies only in the convective PBL, and allows for
slightly stable stratification persinting with upward heat flux.

In the above relations, the inverse turbulent Prandtl numbers αT and αe are given the
values αT = αe = 1. The numerical coefficients Ck and Cε, once ajusted to experimentally
determined values, take the values Ck = 0.4 and Cε = 1/1.4 (Bougeault and Lacarrère
1989).

Generalized specifications for the mixing length lk and the dissipation length lε, based
on the resistance to vertical displacements due to the static stability, are used by the
model following Bougeault and Lacarrère (1989). This parameterization gives a good
response outside the PBL and therefore is appropiate for orography-induced turbulence.

lk = min(lup, ldown)

lε = (lupldown)
1/2.

For each level Z in the atmosphere, lup and ldown are the distances that a parcel
originating from this level, and having an initial kinetic energy equal to the mean TKE of
the layer, can travel upward and downward respectively, before being stopped by buoyancy
effects. More precisely, lup and ldown are defined by

∫ Z+lup

Z
β(θ(Z)− θ(Z ′)) dZ ′ = e(Z)

∫ Z

Z−ldown

β(θ(Z ′)− θ(Z)) dZ ′ = e(Z),

where β is the buoyancy coefficient (β = g/T ).
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2.5 Surface submodel

To apply the equation 2.14, which contains the expression for the vertical turbulent
diffusion Fvar in the boundary layer, it is necessary to know the turbulent fluxes BKex

∂var
∂ν

at the lower boundary (ν = σ = 1). These are given by

BKm
∂πu

∂ν
= πQm cosα

BKm
∂πv

∂ν
= πQm sinα

BKθ
∂S

∂ν
= π

(
QsP̂

T
+
LvQe
CpT

)

BKθ
∂W

∂ν
= πQe,

where tanα = Vh/Uh, the ratio of the two wind components at the first grid point above
the surface, and where Qm, Qs and Qe represent the vertical eddy fluxes of momentum,
sensible heat and water vapour at the surface:

Qm = u2
∗

Qs = −u∗θ∗
Qe = −u∗q∗,

where u∗, θ∗ and q∗ are scaling velocity, temperature and specific humidity.
The above turbulents fluxes are calculated in the model following the surface layer

parameterization of Louis (1979). The scheme is based on the Monin-Obukhov similarity
theory with bulk relations evaluated between the surface, with roughness length z0, and
the lowest model level at a height z above the ground. In summary, defining the bulk
Richardson number (a stability parameter) for the layer

RiB =
gz∆θ

θ̄u2
,

the surface eddy fluxes are calculated as

u2
∗ = a2u2Fm

(
z

z0

, RiB

)

u∗θ∗ =
a2

R
u∆θFh

(
z

z0

, RiB

)

u∗q∗ =
a2

R
u∆qFh

(
z

z0

, RiB

)
,

where

a2 = k2
/(

ln
z

z0

)
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is the drag coefficient in neutral conditions (k is the Von Karman constant), and u refers
here to the total wind, not to the x-component. The constant R, ratio of the drag
coefficients for momentum and heat in the neutral limit, was estimated by Businger et
al. (1971) to be 0.74. The universal functions Fm and Fh are adjusted for each of the
following regimes:

1. In the unstable case (RiB ≤ 0):

F = 1− bRiB
1 + c|RiB|1/2 .

2. In stable conditions (RiB > 0):

F = 1/(1 + b′RiB)2,

where the factors b, b′ and c are given by

b = 2b′ = 9.4

c = C∗a2b
(
z

z0

)1/2

.

C∗ = 7.4 for momentum and 5.3 for the heat and moisture fluxes.

3. For free convection (u → 0 and RiB < 0):

u∗θ∗ = − 1

5.3Rv

(
gz0

θ̄

)1/2

∆θ3/2

u∗q∗ = − 1

5.3Rv

(
gz0

θ̄

)1/2

∆θ1/2∆q.

4. In the case u → 0 and RiB ≥ 0:

u∗θ∗ = u∗q∗ = 0.

As can be seen in the above expressions, the surface eddy fluxes are directly dependent
on the surface values of temperature and humidity. In particular, the necessary θz0 and
qz0 are calculated from the surface values θG and qG with the expressions

θz0 = θG + 0.0962(θ∗/k)(u∗z0/ν)
0.45

qz0 = qG + 0.0962(q∗/k)(u∗z0/ν)
0.45,

where ν the kinematic viscosity of air.
Except over water masses as seas or lakes, where the surface temperature is assumed

constant and the humidity is saturant, these parameters can vary significantly during the
diurnal cycle. As a consequence, the surface sub-model is closed solving the energy and
water budget equations at the air-soil interface to obtain the temperature and moisture at
the surface. Difussion equations for temperature and moisture content are solved in the
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soil, which is divided into several vertical levels. Such balances are significantly affected
by the presence of vegetation, which modifies the partition and intensity of the surface
turbulent fluxes. Its effect is modulated through the shielding factor, defined as the
fractional coverage on a grid area by a dense vegetation canopy.

For convenience, we distinguish between bare soil and vegetative surfaces. Only the
main formulations applied by the surface sub-model are given. For more details and for
a description of the numerical implementation of the scheme, see Mahfouf et al. (1987a),
Pinty et al. (1989), McCumber and Pielke (1981) and Deardorff (1978).

a. Bare soil

The land surface temperature (Ts)G for a surface of emissivity ε and albedo α, is
computed by a iterative solution to the energy balance equation

(1− α)RS + εRL − εσ(Ts)
4
G + ρLvu∗q∗ + ρCpu∗θ∗ − (Hs)G = 0. (2.16)

RS and RL in the first and second terms are the solar and downcoming longwave
radiative fluxes respectively, and the third term the outgoing longwave radiation from the
surface (σ is the Stefan-Boltzman constant). Therefore, the three terms combined form
the net radiation at the surface. The fourth, fifth and sixth terms are the latent, sensible
and soil heat fluxes.

On the other hand, the moisture at the surface is obtained by solving the water budget
equation

ρu∗q∗ + P − (Ws)G = 0,

where P is the precipitation rate and (Ws)G the soil moisture flux at the surface.
The ground heat flux, Hs, and soil moisture flux, Ws, are written as

Hs = −λ∂Ts
∂Z

Ws = −ρwKη
(ψ + Z)

∂Z
,

where ρw is the liquid water density, ψ the moisture potential, Kη the hydraulic conduc-
tivity of the soil and λ its thermal conductivity.

These fluxes are obtained by solving for several levels in the first meter of soil, diffusion
equations for the temperature, Ts, and the volumetric moisture content, η:

ρc
∂Ts
∂t

=
∂

∂Z

(
λ
∂Ts
∂Z

)

∂η

∂t
=

∂

∂Z

(
Dη

∂η

∂Z

)
+
∂ Kη

∂Z
,

where ρc is the specific heat capacity of the soil and Dη its hydraulic diffusivity. A set of
equations relate the variables ψ, Kη, Dη, ρc and λ as functions of the soil moisture:

ψ = ψs

(
ηs
η

)b
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Kη = Kηs

(
η

ηs

)2b+3

Dη = −bKηsψs
η

(
η

ηs

)b+3

ρc = (1− ηs)ρici + ηρwcw

λ = 0.167η + 0.1.

In the above equations, the saturated values ηs, Kηs , ψs, the volumetric heat capacity
of dry soil ρici, as well the exponent b, are functions of the soil texture. Here, ρwcw is the
heat capacity of water.

The relative humidity at the surface is calculated as function of (Ts)G and the surface
moisture potential ψG:

h = exp

(
− gψG
Rv(Ts)G

)
.

The surface specific humidity is then determined from

qG = hqs,

where qs is the saturation value at the temperature (Ts)G.

b. Vegetative surfaces

Based on Deardorff (1978), the surface scheme also allows for the inclusion of a single
layer of vegetation which is assumed to have negligible heat capacity. A second energy
budget is established for the foliage layer taking into account the exchanges above and
below the canopy. The modified expressions for the sensible heat and the evapotranspira-
tion fluxes (Hsh and Eh respectively) from the ground foliage system to the atmosphere
are

Hsh = Hsg +Hsf = ρCpcHguaf (Tg − Taf ) + 1.1NρCpcfuaf (Tf − Taf ), (2.17)

Eh = Eg + Ef = ρcHguaf (qg − qaf ) +Nρcfuaf [qsat(Tf )− qaf ]r
′′
. (2.18)

The first term of the sensible heat flux (Hsg)is the generalization of the sensible heat
flux at the ground surface, and the second term (Hsf ) the expression for the net sensible
heat flux from the foliage to the surrounding air. Similarly, the first term of the evap-
otranspiration rate (Eg) denotes the evaporation at the ground surface, and the second
term (Ef ) the net foliage evaporation and/or transpiration rate per unit horizontal ground
area.

In Eqs. 2.17 and 2.18, cHg is the heat and moisture transfer coefficient applicable to the
ground surface underneath a canopy. It is given by interpolation between that aplicable
to bare ground cH0, and that applicable to the top of a dense canopy cHh:

cHg = (1− σf )cH0 + σfcHh,

where σf represents the shielding factor.
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Tg and Tf (and qg and qf ), refer to ground surface and foliage surface values respec-
tively. The mean properties of the air within the foliage, Taf and qaf , are assumed to be
intermediate beween above-canopy air properties at z = za (first atmospheric level of the
model), foliage surface properties, and ground surface properties:

Taf = (1− σf )Ta + σf (0.3Ta + 0.6Tf + 0.1Tg),

qaf = (1− σf )qa + σf (0.3qa + 0.6qf + 0.1qg).

For the mean wind, the following expression is used

uaf = 0.83σfc
1/2
Hhua + (1− σf )ua.

The dimensionless heat transfer coefficient cf which appears in Eqs. 2.17 and 2.18 is
assumed to be given by

cf = 0.01(1 + 0.3/uaf ).

N , the net leaf area index, is defined as the total one-sided leaf area of the foliage
relative to the ground area. As explained in Deardorff (1978), the fraction of potential
evaporation from the foliage r

′′
is function of the liquid water retained on the foliage

(predicted in response to precipitation and evaporation or condensation from or onto the
leaves), the atmospheric resistance (cfuaf )

−1, and the stomatal resistance rst, calculated
with the expression

rst = rstmin
SstMst,

where rstmin
is the minimum stomatal resistance (function of the vegetation type), Sst

is the solar radiation factor and Mst is a factor limiting the transpiration when the soil
becomes very dry or when the atmospheric demand is too strong (Pinty et al. 1989).

A gross energy budget for the foliage layer must be established in order to estimate Tf .
The values at the top of the canopy being denoted by subscript h, those at the ground by
subscript g, and the direction of radiative fluxes by arrows, the assumption of no canopy
heat storage leads to

RSh ↓ +RLh ↓ −RSh ↑ −RLh ↑ −(RSg ↓ +RLg ↓ −RSg ↑ −RLg ↑) = Hsf + LvEf ,

where as in Eq. 2.16, RS is the shortwave and RL the longwave flux. The fluxes RSh ↓
and RLh ↓ are given by the radiation scheme. By definition of the shielding factor σf ,
RSg ↓ is given by

RSg ↓= (1− σf )RSh ↓ .
Given the ground albedo αg, the reflected flux RSg ↑ is given by

RSg ↑= αg(1− σf )RSh ↓ .

The upward longwave flux just above the ground, RLg ↑, is obtained by interpolating
with σf between the expression applicable above bare soil and that applicable just above
soil overlain with a dense canopy:

RLg ↑= (1− σf )[εgσT
4
g + (1− εg)RLh ↓] + σf [εgσT

4
g + (1− εg)εfσT

4
f ]/(εf + εg − εfεg).
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For σf = 1 this expression for RLg ↑ reverts to that for the radiative flux between two
parallel surfaces of emissivities εg and εf . For σf = 0 the expression similarly accounts
for the upward reflection of RLh ↓ from the ground when εg < 1. The three remaining
radiative fluxes are similarly obtained:

RSh ↑= αg(1− σf )RSh ↓ +αfσfRSh ↓,
RLh ↑= (1− σf )[εgσT

4
g + (1− εg)RLh ↓] + σf [εfσT

4
f + (1− εf )RLh ↓],

RLg ↓= (1− σf )RLh ↓ +σf [εfσT 4
f + (1− εf )εgσT

4
g ]/(εf + εg − εfεg).

At the ground surface, the balance equations written for bare soil are mantained, but
the fluxes are now represented by RSg ↓, RLg ↑, RLg ↓, Hsg, Eg, etc.

2.6 Radiation parameterization

Calculations of solar radiation RS and downcoming longwave radiation RL are neces-
sary to solve the surface energy balances presented in section 2.5. The radiation scheme,
based on Mahrer and Pielke (1977), determines the evolving radiative fluxes in the atmo-
sphere. Therefore, it allows the calculation of RS and RL at the ground, and the solar
radiative heating and longwave cooling rates for each atmospheric layer throgh the flux
divergence. Both rates combine to give the source-sink term SS in the thermodynamical
equation 2.6.

Scattering and absorption of solar radiation by permanent gases such as oxygen, ozone
and carbon dioxide is included in the scheme. Absorption and longwave emission by the
atmospheric water constituents (water vapor and clouds) is also considered. For a detailed
description of the radiation scheme, the reader can find the parameterized form of the
shortwave transmissivity functions and longwave emissivities in Mahrer and Pielke (1977)
and Pielke (1984, chapter 8). Only the formulation of the modified surface fluxes to
account for the terrain slope is here given explicitaly:

Denoting R̄S and R̄L as the solar and longwave fluxes for a horizontal surface, for a
slant surface the solar and infrared radiation will be modified to

RS = R̄S
cos i

cosZ
,

RL = R̄L cosα.

The slope angle α is calculated from the terrain height zG with the expression

α = tan−1




(
∂zG
∂x

)2

+

(
∂zG
∂y

)2



1/2

.

The solar zenith angle Z obeys cosZ = sinφ sin δ + cosφ cos δ cosψ, where φ is the
latitude, δ the solar declination and ψ the solar hour angle (see Fig. 2.2). Finally, i is the
angle of incidence of solar rays on the inclined surface, where

cos i = cosα cosZ + sinα sinZ cos(β − γ).
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Requiring that south has zero azimuth, the solar and slope azimuths β and γ are given
by:

β = sin−1

(
cos δ sinψ

sinZ

)
,

γ = tan−1

(
∂zG
∂y

/
∂zG
∂x

)
− π

2
.

2.7 Boundary conditions

At the top of the model domain, the vertical velocity ν̇ is set to zero. However,
especially for the case of mountain waves, vertical transport of momentum may be very
important and reach high altitudes, inducing reflection from the uppermost level with
such boundary condition. To minimize reflection from the upper boundary, an absorbing
layer containing several computational levels is included. In the absorbing layer, the
background diffusion (imposed by a second order operator in this layer), is progresively
increased, reaching its maximum value at the top level (Nickerson et al. 1986):

KH2 = K∗
H2 +Kabs

H2

(
sin

π

2

σkabs − σk
σkabs

)2

for k < kabs.

In this expression, kabs is the number of vertical levels composing the absorbing layer.
The second-order diffusion constant KH2 has the maximun value K

∗
H2 +Kabs

H2 at the top
where σ1 = 0, and equals the background value K

∗
H2 at level k = kabs

At the lateral boundaries, the values of the fields are prescribed externarlly. To avoid
reflection, the prognostic variables are subjected to a forcing in the marginal zone (4
interior points from the boundary) that constrains them to relax towards the externally
specified field on a time scale that varies with distance from the lateral boundary (Davies
1976).

2.8 Numerical aspects

For the integration of the governing equations, a staggered vertical grid (Fig. 2.3) is
used. With reference to the figure, variable ν̇ is defined at the circled levels, and all other
variables are defined at the crosses.

The horizontal grid (Fig. 2.4) is also staggered to reduce the truncation errors on the
level ν surfaces (Anthes and Warner 1974). The dynamical variables u and v are defined
at the crosses, while all thermodynamic variables are defined at the dots. The variable
ν̇ is not defined on this horizontal level but at distances ∆ν/2 above or below this level
and at positions corresponding to the dots.

Centered differences are used to represent the time and space derivatives (leapfrog
scheme). That is, the terms of the equations are evaluated with centered spatial differences
at the middle time level and used to advance the integration between t−∆t and t+∆t in
a single step. However, for reasons of stability the horizontal diffusion term is evaluated
at t−∆t. The vertical diffusion is treated implicitaly.
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An Asselin filter is applied to connect odd and even time steps. The filtered value at
the t− 1 time level χ̃t−1 is given by

χ̃t−1 = χt + α(χt+1 − 2χt + χt−1),

where the coefficient α takes a value of 0.25 (Schlesinger et al. 1983).
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Chapter 3

RESULTS

3.1 Characteristics of the experiments

A set of four two-dimensional numerical experiments was carried out to study the
influence of vegetation on the development and structure of the mountain wave, as well as
on the distribution in time and space of surface parameters. The astronomical parameters
for radiation calculations correspond to 21 March at a latitude of 400N. The simulations
begin at 0600 LST (just after sunrise) and continue until 1800 LST (just before sunset).
The model domain is 500 km in the W-E direction, with an horizontal grid length of 10
km. The time step is 10 seconds.

a. The atmosphere

As in previous works (Mahrer and Pielke 1978; Nickerson et al. 1986), the model
is initialized with a single radio sounding, providing horizontally uniform initial fields.
The layer below 300 hPa has a lapse rate of 6 K km−1 in which the temperature at zero
elevation has a value of 280 K, and the layer between 300 hPa and the upper boundary
(100 hPa) is isothermal. The wind is westerly with a vertically uniform speed of 20 m
s−1. Initially, the microphysical variables and all the surface fluxes are set to zero. Except
for air moisture and surface characteristics, all the simulations are initialized in the same
manner.

There are 15 ν vertical levels in the atmosphere between the top and botton bound-
aries. The vertical grid corresponding to the 15 levels is shown in Table 3.1, together
with the corresponding σ levels. The resolution near the surface is significantly increased
with the ν coordinate with respect to the usual σ coordinate. For the present cases, there
are four computational levels in the lowest kilometer and the first one is 15 m above the
ground aproximately.

Nondimensional values for second and fourth order diffusion coefficients are 0.01 and
-0.01 respectively. The absorbing layer occupies the 5 upper levels of the domain, and the
maximum diffusion induced at the top level has a nondimensional value of 0.10.
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Using the method of Davies (1976), all the fields are relaxed toward their initial values
at the lateral boundaries as has been done in previous works (e.g. Richard et al. 1989).

b. The surface

The orography consists of a north-south oriented ridge, centered in the domain and
defined by the Agnesi function (Laprise and Peltier 1989):

zs(x) = h/[1 + (x/a)2]

where h and a are 1 km and 20 km respectively.
With the above values for h and a, we can calculate the representative nondimensional

numbers Nh/U and Na/U for the flow considered. With the wind speed U = 20 m s−1

and the Brunt-Väisäla frequency N (not uniform in our case) given by its value at z = h,
the nondimensional numbers result in Nh/U ∼ 0.8 and Na/U ∼ 16. These values confirm
the nonlinear (without wave breaking) and hydrostatic nature of the mountain wave in
study.

The soil, with a depth of 1 m, is divided into 13 vertical levels. A mixed soil type is
used for all simulations. Its hydraulic, thermal and radiative properties are summarized
in Table 3.2. For cases in which vegetation is included, two representative types of cover
are considered, conifer forest and shrub. Their characteristics are listed in Table 3.3.

The experimental conditions are summarized in Table 3.4. Experiments 1 and 2 are
carried out for bare soil but for different initial conditions of atmospheric moisture (dry
atmosphere in Experiment 1 and a saturated atmosphere in Experiment 2), and are
included for comparison with previous studies in which the surface energy budget was not
used to calculate the surface temperature (Nickerson et al. 1986, Fig. 3.1).

In Experiments 3 and 4, both with saturated atmosphere, the surface is covered by
vegetation. Two distinct vegetative regions are considered: the top (zs(x)≥500 m) and
the slopes (zs(x)<500 m). The shielding factor is homogeneous over each vegetation area.

For each of the four experiments, the temperature of the atmospheric sounding at the
air-land interface was used to initialize the vertically uniform temperature within the soil.
The volumetric water content of the soil was initially 60% of the saturated value.

3.2 Results and discussion

It is not the aim of this study to determine the effects of soil moisture and texture.
Therefore, all the simulations presented in this work have been performed with the same
soil properties.

3.2.1 Wave structure

The cross-sections presented correspond to the central part of the model domain.
Two representative times are considered when discussing the results given by the model,
1200 LST and 1800 LST. The wave is represented by means of the potential temperature
field. Because the potential temperature is nearly conserved along the trajectories of air
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parcels, and because the patterns shown are quasi-stationary, the isopleths of potential
temperature can be viewed as approximate streamlines of the airflow.

Figure 3.2 displays the wave obtained for Experiment 1. The maximum amplitude of
the potential temperature wave develops at an altitude between 6 and 8 km over the lee
of the ridge, and enhanced surface winds also appear in the lee. These results are qual-
itatively and quantitatively in agreement with previous experiments (Mahrer and Pielke
1978; Nickerson et al. 1986). However, in contrast to the conditions considered by Nick-
erson et al (1986), the surface temperature in our simulations is allowed to vary, thereby
resulting in some differences, especially in the lower part of the atmosphere (compare
Fig. 3.2 against Fig. 3.1a). The development of thermally induced slope winds could ex-
plain, for example, why in our experiment the west slope surface winds are stronger and
the east slope winds weaker.

From Figures 3.2a and 3.2b, it can be also seen how the wave intensity decreases during
the simulation. Without additional information, it is difficult to asses to what extent this
result is a consequence of the diurnal variability in the boundary layer or if it is due to a
spin up process within the model. This point will be discussed in section 3.2.5.

The saturated case (Experiment 2) after 12 hours of simulation is presented in Fig. 3.3a.
In agreement with Durran and Klemp (1983), the figure shows that the inclusion of mois-
ture produces a weaker wave than is obtained in the dry case. Comparing the result with
Fig. 3.2b, it can be also seen that the inclination of the wave is smaller when moisture
is present. The damping effects are the consequence of the reduction of the atmospheric
stability in cloudy regions.

Another moisture effect derived from the heat released by the condensation products
in the ascending slope is the additional warming in the lee (foehn effect). This moisture
effect is detected from a comparison of Figs. 3.2b and 3.3a (see Fig. 3.3b for a detailed
view). The same comparison shows that the lower atmosphere is warmer over the whole
domain and less stable in the lee for the saturated case. This reduction of stability in the
moist case was also present in the simulations of Nickerson et al. (1986) (see Fig. 3.1b).

Having established the validity of our results by comparison with previous works, two
more experiments were carried out to study the effects of surface vegetation on the wave
structure. Figures 3.4 and 3.5 display the results for Experiment 3 (non homogeneous
vegetation) and Experiment 4 (homogeneous vegetation).

The wave obtained in case 3 (Fig. 3.4) is appreciably weaker than the wave with bare
soil. The centers of maximum and minimum winds are situated 1 km higher in this
case, and the mid tropospheric amplitude of the temperature wave is not as pronounced.
Over the crest of the ridge where friction induced by conifers is very intense, the wind
shear extends vertically to higher altitudes than in Experiment 2. At low levels, isotachs
are more symmetrically distributed between both slopes in Fig. 3.4 than in Fig. 3.3a,
indicating that a dense stand of tall trees at the crest of the mountain may significantly
reduce the intensity of downslope winds. In this case, the wave intensity is also stronger
at 1200 LST than at 1800 LST.

There is a region of reduced stability in the lower atmosphere over the eastern slope
of the barrier at noon (Fig. 3.4a). Over that same area, the stratification becomes more
stable by 1800 LST (Fig. 3.4b), but does not reach the degree of stability found over the
western slope. Of all three saturated experiments, the reduction in lee side stability is
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most pronounced in Experiment 3.
As expected, when the tall trees at the top of the mountain are replaced by shrub, the

wave intensity given by the model (Fig. 3.5) evolves to an intermediate state between the
results of Experiments 2 and 3. The reduced surface friction associated with the uniform
covering of shrub on the slopes as well as on the crest of the mountain results in lee side
surface winds that are 4 ms−1 stronger than when the crest is covered by tall trees.

3.2.2 Turbulent kinetic energy

An important aspect of the dynamical and thermodynamical fields induced by the
mountain is the intensity and distribution or the turbulent kinetic energy. Figures 3.6
to 3.9 display the TKE obtained in the experiments, as well as the areas affected by
clouds (no clouds are formed in case 1 since the moist soil is not a significant source of
moisture for the atmosphere). In the prognostic equation of TKE (Eq. 2.15), in addition
to the transport terms, there are three important terms which maintain a near balance
in the free atmosphere, resulting in no net turbulence production. These are the shear
production, the buoyancy production (negative in stable conditions), and the viscous
dissipation. Wherever the stratification is sufficiently stable, even with appreciable wind
shear, no turbulence appears. However, since in our experiments the stability of the PBL
reaches low values, especially in the lee for the saturated cases as a result of the foehn
effect, and since there are regions of strong wind shear close to the slopes, this leads to
the generation of turbulence at low levels, primarily above the lee slope.

The TKE figures show that the turbulence is stronger at noon when the PBL is less
stable than in the evening in all cases. However, the four simulations result in significant
differences in the TKE intensity and distribution. We note in Figs. 3.6 to 3.9 that the dry
case is not as favorable for turbulence production as the moist cases in spite of having
stronger wind shear. This is because the midday reduction of the thermal stability only
affects a very shallow layer close to the ground where the temperature increases markedly
in response to the incoming solar radiation. In fact, the turbulence distribution in this
case is very homogeneous along the domain at noon (Fig. 3.6a) since the increase of
the surface temperature is nearly the same over the whole domain. Since the long wave
radiation is not readily absorbed by the dry atmosphere, the surface cools rapidly during
the afternoon, and by the end of the simulation, turbulence has practically disappeared
except over the eastern slope where the wind shear is stronger (Fig. 3.6b).

In the saturated cases (Figs. 3.7 to 3.9), the solar radiation is appreciably absorbed
and the ground temperature can not increase as much as will be seen in section 3.2.4.
By way of contrast, downwind of the barrier the lower atmosphere remains slightly stable
owing to the foehn warming effect. As a result, the turbulence distribution is highly
skewed, with low values upwind of the barrier and high values downwind associated with
the wind shear and light stability within the PBL.

It is important to note the role played by the conifer forest, through its extensive layer
of wind shear, in the formation of a deep and intense turbulent layer (Fig. 3.8). That
layer has a depth of 1 km in the lee of the mountain, but it also exists in a shallow layer
above the western slope. The results for Experiments 2 and 4 (Figs. 3.7 and 3.9) are
similar since there are only minor differences of wind and temperature at low levels. In
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these cases, the region of turbulence is found in a shallow layer over the eastern slope.

3.2.3 Clouds and precipitation

The cloud water mixing ratio for the cases that were initially saturated is shown
in Figs. 3.7, 3.8 and 3.9. The clouds induced by orographic uplifting over the upwind
slope are present in all three experiments. The greatest vertical extent is observed for
the case when the conifer forest covers the top of the mountain. The maximum values
of the liquid water content are also obtained for this case (more than 0.25 gkg−1 close to
the crest). The major differences between the three experiments upwind of the barrier
is the strength of the cloud band at an altitude of 4 and 6 km. Cases 3 and 2 produce
the highest and lowest liquid water concentrations respectively. Case 4 again produces
intermediate values.

In addition, the vertical motion induced by the wave downwind of the barrier leads
to the formation of a cloud with low liquid water content at an altitude between 6 and 8
km. Experiment 3 has the lowest liquid water content in that upper level cloud owing to
a weaker intensity of the upper level wave. More condensation occurs in the upper level
cloud of Experiment 4 (Fig. 3.9), but the greatest amount is produced in Experiment 2
(Fig. 3.7).

Model-predicted accumulated rainfall over the mountain barrier is shown in Fig. 3.10.
The asymmetrical distribution of cloud water results in heavier rainfall over the upwind
slope and crest, with an abrupt decrease over the lee of the ridge. In the proximity of
the eastern boundary, a secondary maxima appears as a consequence of the upper cloud
formation, but only for Experiments 2 and 4.

The amount of rainfall given by the model is sensitive to the surface vegetative cover.
The amount of precipitation reaching the surface of the western slope is enhanced when
the soil is covered by shrub, while the case with the conifer forest covering the crest of
the ridge produces the most rainfall over both slopes.

3.2.4 Surface parameters

Figures 3.11 - 3.13 show the temporal evolution of surface parameters at three loca-
tions on the montain barrier: one at the top of the ridge (Top), and two others at an
elevation of 200 m (East and West). It should be noted that atmospheric and sub-surface
soil models are fully coupled and interactive. Near ground gradients of temperature and
moisture depend not only on the evolving structure of the atmospheric wave, but also on
other factors such as rain which is absorbed by the soil and accumulated on the leaves of
the surface vegetation.

Figure 3.11 shows the diurnal curves of net radiation at the surface for the saturated
cases. The curves for the dry case (not shown), revealed that there is net loss during the
beginning and ending stages of the simulation in which the sun angle is still low, but high
positive values occur during the central part of the day (up to 550 Wm−2 at noon) when
the solar radiation reaches the ground without significant atmospheric absorption.

However, as can be seen in Fig. 3.11, significant radiative loss does not occur in
the saturated cases owing to the downward long wave reemission by atmospheric water
vapor. On the other hand, the atmospheric water constituents (vapor and liquid water)
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exert an important attenuation of the solar radiation, and the net radiation at the surface
is therefore reduced.

The liquid water of clouds is a major factor in determining the amount of solar radi-
ation reaching the ground. The diurnal curves for the three experiments at sites covered
by dense clouds (West and Top) are nearly identical, although higher values are obtained
over the Top where there is less cloud water in the column of air above the summit.
However, over the Eastern slope the net radiative energy for case 3 differs appreciably
from the values obtained for cases 2 and 4. As noted in the previous section, the cloud
generated by the mountain wave downwind of the barrier is not as well developed in case
3 and the net radiation at the surface exceeds that obtained for cases 2 and 4 by 100
Wm−2 at noon.

The uniformity in net radiation previously noted also applies to the ground tempera-
tures for the Top and West locations, except that the case with bare soil yields slightly
higher temperatures (Fig. 3.12). The effect of vegetation is to reduce the thermal os-
cillation during midday, since part of the incoming radiation is consumed by vegetative
processes. For all cases, the daytime temperature increase for those locations is less than
1.5 K. For the East location where the solar radiation arrives less attenuated, the daytime
increase exceeds 2 K, but the curves are more complex owing to the absorption of the
enhanced incoming solar radiation by the vegetative surface.

Figure 3.13 shows that at the height of 15 m, corresponding to the first computational
level of the atmospheric model, the temperature is nearly identical for the three simula-
tions. The maximum temperatures are reached at 1300 LST, but there is a significant
difference between the values on the eastern and western slopes, with the air over the
eastern slope being warmer by 3 K. This fact reflects the wave-induced heating associated
with the foehn effect.

Another important aspect is the energy partition between the transpiration (latent
heat flux) and the sensible heat fluxes in areas covered by vegetation. This partition is
controlled primarily by the leaf stomatal resistance (Pinty et al. 1989). Figures 3.14 and
3.15 show the temporal variation of both fluxes for a conifer forest and for the case of
shrub covering the top of the ridge. The result is consistent with their different minimum
stomatal resistances given in Table 3.3. Since the stomatal resistance is larger for shrubs
than for conifer trees, the transpiration for the shrub covered surface is lesser, resulting in
a smaller latent heat flux. On the other hand, the sensible heat flux is greater for shrubs
than for conifer trees.

3.2.5 Drag and model adjustment

A measure of the strength of the wave response is the surface pressure drag across
the ridge. This is defined by

D =
∫ L

0
π
∂zs
∂x

dx

where L is the length of the domain. The time-dependent development of the pressure
drag for the different experiments is shown in Fig. 3.16. After a period of adjustment,
the four simulated mountain waves reach a nearly stationary state before the end of the
simulations. The drag value that is ultimately reached in the dry case (0.16 106kg s−2) is
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practically the same as in the moist cases, even though the tendencies prior to 1200 LST
are different. A possible explanation for that result could be the foehn effect previously
mentioned. Although the difference of pressures between both sides of the ridge induced by
the wave itself is larger for a dry atmosphere, there is at the same time in the moist cases
another mechanism which tends to accentuate that difference by lowering the pressure
above the lee slope. That air is warmer and less dense and therefore serves to compensate
for the stronger dynamic effect of the dry wave.

An important consideration in the assessment of the results is the time required for
the model to adjust to the initial conditions. The fact that the wave intensity decreases
for the four cases simulated between the times considered (1200 and 1800 LST), could be
taken as a consequence of the model adjustment. However, the adjustment of the surface
drag to near equilibrium values in only one hour suggests that the spin-up process does
not significantly affect the results. That initial assessment was subsequently confirmed
by carrying out Experiment 3 for a period of 48 hours. The fields for the second day of
simulation (not shown) are nearly indistinguishable from those presented above, indicating
that the temporal evolution of the fields represents the effects of temporal changes in the
boundary layer rather than a model adjustment process. That conclusion is confirmed in
Fig. 3.17 which presents the surface drag for that period of 48 hours. The uniformity of the
drag after 1800 LST indicates that the model has completely adjusted. The appearance
of a slight dome in the curve on the second day is attributed to a new strengthening of
the wave.

3.3 Conclusions

A two-dimensional meso-β model with a coupled soil and vegetation sub-model has
been used to study the effects of different vegetative surfaces on orographically generated
atmospheric waves. In the absence of vegetation but with a moist soil, the atmospheric
wave structure for both dry and saturated atmosphere is in good agreement with previous
studies (Nickerson et al. 1986), but shows a redistribution of winds at low levels owing to
a more realistic treatment of the ground temperature which is allowed to vary in response
to the evolving surface energy fluxes.

The inclusion of dense vegetation in the simulation of mountain waves reveals a great
sensitivity of the airflow and thermal structure at all levels of the model to the treatment of
the lower boundary. A tall, dense vegetative surface such as a conifer forest significantly
diminishes the intensity of the mountain wave. As a result of a higher symmetry of
isotachs between both slopes at low levels, this case corresponds to a diminution of the
stronger downslope surface winds, and the creation of an extensive layer of vertical wind
shear in the proximity of the summit. That deep layer of strong wind shear in the
low atmosphere, combined with low stability, seems to be an important agent in the
development of turbulence. The reduction in atmospheric stability associated with foehn
conditions in a moist environment has important consequences for the development of
turbulence downwind of a mountain barrier.

The model-predicted rainfall suggests an important role for vegetation in the devel-
opment of clouds and the enhancement of precipitation. When the surface is covered by
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shrub, enhanced rainfall occurs from the orographic cloud that develops over the upwind
slope. But when the shrub on the crest of the mountain is replaced by a conifer forest as
typically occurs in many parts of the world, the rainfall over the upwind and downwind
slopes is enhanced.

The results obtained in this work show the importance of surface induced frictional
effects on the simulation of surface airflow, stability and turbulent kinetic energy of oro-
graphically forced circulations. Improved simulations and model predictions of airflow
over mountainous terrain will require an adequate treatment of the vegetative canopy in
the surface energy budget calculation. In particular, a realistic specification of the rough-
ness length, explicitaly when simple parameterizations for the surface layer are used, or
implicitaly through an adequate knowledge of the vegetation cover in the area of interest
if complet parameterizations are included, seems necessary. These findings may be par-
ticularly relevant to studies of atmospheric dispersion in the PBL over complex vegetative
surfaces.
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APPENDIX 1

List of Symbols

a half width of the ridge
B vertical scale factor
Cp specific heat at constant pressure
Cε numerical coefficinet for the TKE dissipation term
Dπu, Dπv, DS, DW , Dπqr , DπNr , Dπe horizontal difussion terms
e turbulent kinetic energy
es saturation vapor pressure
Fπu, Fπv, FS, FW , Fπqr , FπNr , Fπe turbulent mixing terms
f Coriolis parameter
g acceleration of gravity
h maximum height of the ridge
H entropy
Km, Kθ, Ke exchange coefficients
lk mixing length scale
lε dissipation length scale
Lv latent heat
Nr number of raindrops concentration
P pressure
P0 reference pressure = 1000 hPa
Ps surface pressure
Pt pressure at the upper boundary = 100 hPa

P̂
(
P
P0

)Rv/Cp

qcw cloud water mixing ratio
qr rainwater mixing ratio
qv water vapor mixing ratio
qvs saturation water vapor mixing ratio
RL incoming longwave radiation at the surface
RS incoming solar radiation at the surface
Rv universal gas constant
S entropy variable defined by S = πH
SS, SW , Sπqr , SπNr source-sink terms
t time
T temperature
T0 reference temperature = 273.16 K
Ts saturation temperature
T ∗ virtual temperature
u wind component along the x-coordinate
v wind component along the y-coordinate
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W moisture variable defined by W = π(qv + qcw)
x coordinate in the west-east direction
y coordinate in the south-north direction
zs surface height
∆t time step
∆x horizontal grid length
γcg temperature countergradient
π (Ps − Pt)
σ pressure coordinate defined by σ = (P − Pt)/π
σ′ dσ/dν
ν vertical coordinate related with σ by σ = (4ν − ν4)/3
ν̇ vertical velocity
φ geopotential
ρ density of air
ρl density of liquid water
θ potencial temperature
θv virtual potential temperature. θv = θ(1 + 0.61qv)
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