Comparison of three different methods of perturbing the potential vorticity field in mesoscale forecasts of Mediterranean heavy precipitation events: 10 June 2000 and 9 October 2002

Maria-del-Mar Vich1*

R. Romero1 E. Richard2 P. Arbogast3 K. Maynard3

1Meteorology Group, Universitat de les Illes Balears, Palma de Mallorca, Spain

2Laboratoire d’Aérologie CNRS UMR 5560, Université de Toulouse, France

3Météo-France, Toulouse, France

*(mar.vich@uib.es)
Comparison of three different methods of perturbing the PV field
Background

Objectives

- Develop several ensemble prediction systems applied to Mediterranean high impact cyclones associated with heavy rain
 - PV-perturbed
 - (initial and boundary conditions through three-dimensional PV structure)
 - semi-objectively
 - with the most intense values and gradients PV zones
 - objectively
 - with the MM5 adjoint model calculated sensitivity zones
 - Compare the performance of the EPSs for the 24h accumulated precipitation field (30-54 h simulation time)
Build the two **PV-perturbed** Ensemble Forecasts

Introduce realistic perturbations randomly to the PV fields through a PV error climatology along the three-dimensional PV structure.

- **PV-adjoint:**
 - MM5 adjoint model calculated sensitivity zones at 300 hPa

- **PV-gradient:**
 - The most intense values and gradients PV zones at 300 hPa
PV error climatology

Comparing the PV fields of

ECMWF analysis \leftrightarrow ECMWF 24 h forecast,

of a large collection of MEDEX cyclones,

one can define:

- **The displacement error** (DE): the minimum displacement of the 24 h forecast PV field showing local maximum correlation with the analysis PV field

- **The intensity error** (IE): the difference between the displaced 24 h forecast PV field and analysis PV field relative to the analysis PV average
Background

Results

- The two ensembles have a good performance (better than a multiphysics EPS)
- PV-gradient performs better than PV-adjoint
- PV-adjoint higher computational cost than the PV-gradient
Background

Now

- Add a PV modification technique guided by satellite water vapor observations

- Compare the performance of these three methods
Applications of satellite measures: Water Vapor channel

Bands highly absorbed by water vapor radiation:

- **6.2 µm**: sensitive to the water vapor content in mid and upper troposphere. Useful to be applied at synoptic scale for upper-level diagnosis.

- **7.3 µm**: sensitive to low-level moisture. Useful to study low level humidity features.
Introduction

Comparison of three different methods of perturbing the PV field

6.2 μm

synoptic-scale upper-level features
Introduction

WV brightness temperature related to upper-level dynamics

- Upper level jet (strong gradient of 1.5 PVU surface heights) → grey-dark zones
- Upper level PV (dynamic tropopause) anomaly → dark zones
- Synoptic vertical motion
 - areas of ascending air → white zones
 - areas of subsiding air → dark zones

M. Vich (mar.vich@uib.es)
Comparison of three different methods of perturbing the PV field
Introduction

Relation between WV image and potential vorticity

Figure: 1.5 PVU surface height (hPa) and WV brightness temperature (shading, K).
(Santurette and Georgiev 2005)

At the vicinity of a jet, where the stratospheric intrusions occur

upper level PV anomaly → dark zones
Introduction

WV brightness temperature related to upper-level dynamics

- Upper level jet (strong gradient of 1.5 PVU surface heights) → grey-dark zones
- Upper level PV (dynamic tropopause) anomaly → dark zones
- Synoptic vertical motion
 - areas of ascending air → white zones
 - areas of subsiding air → dark zones
Introduction

Objectives

- Modify the PV field using the WV satellite channel as a guide (PV-satellite) in a case study.

- Compare these modifications to the ones obtained by the PV-gradient and the PV-adjoint ensemble for the 24h accumulated precipitation field (30-54 h simulation time)
Development

MEDEX cyclone of 9th June 2000

Synoptic situation:

- Quasi-stationary convective system
- Atlantic upper-level trough and low-level cold front
- Generation of a mesoscale cyclone
- Advection of warm and moist air toward Catalonia from the Mediterranean Sea

9th June 2000 at 00 UTC
10th June 2000 at 00 UTC
Development

MEDEX cyclone of 9th October 2002

Synoptic situation:

- Quasi-stationary convective system
- Similar to June 2000
- Larger wave length trough

9th Oct. 2002 at 00 UTC
10th Oct. 2002 at 00 UTC
Comparison of three different methods of perturbing the PV field
Comparison of three different methods of perturbing the PV field

June 2000

October 2002
Comparison of three different methods of perturbing the PV field

What we want vs What we have

M. Vich (mar.vich@uib.es)

(June 2000)
How do we get it?

- adding/subtracting PV structures and shifting them at a chosen vertical level and then extend the perturbation in the vertical conserving the vertical gradient.
Development

WV vs PV

What we’ve got: (June 2000)

Comparison of three different methods of perturbing the PV field

Perturbed

Non-perturbed

M. Vich (mar.vich@uib.es)
Simulations Characteristics

- Domain characteristics:
 - Resolution: 22.5 km
 - Center: 39.8 lat and 2.4 lon
 - Area: 120x120 grid

- Forecasting period is 54 h to simplify the posterior verification process (rainfall data is available at 24 h intervals starting each day at 06 UTC).

- The ensemble trial period corresponds to a collection of 19 MEDEX cyclones comprising 56 different simulation periods.

MEDEX: Mediterranean Experiment on Cyclones that produce High Impact Weather in the Mediterranean
Development

Field of study: 24h accumulated precipitation

Available Observations

The forecasted gridded field is interpolated over the rain gauges to compare with the observed data.

Rain gauge data is provided by AEMET (Spanish MetOffice)
Results

24 h accumulated precipitation at 30-54 h simulation time

10 to 11 June at 6UTC

10 to 11 October at 6UTC

Comparison of three different methods of perturbing the PV field
Comparison of three different methods of perturbing the PV field

ROC area

(Area under the ROC curve)

What is the ability of the forecast to discriminate between events and non-events?

Range: 0 to 1, No skill: 0.5, Perfect score: 1

June 2000

October 2002

M. Vich (mar.vich@uib.es)
Comparison

Q-Q plot

Compared the observed and forecasted distributions in terms of quantiles

Perfect score: diagonal

June 2000

October 2002

M. Vich (mar.vich@uib.es)
Comparison

Taylor diagram

Plots in one graph the correlation coefficient and the centered pattern RMS difference between the forecast and the observed field, and the standard deviation of both fields

Perfect score: over the observation

June 2000

October 2002

M. Vich (mar.vich@uib.es)

Comparison of three different methods of perturbing the PV field
Conclusions

We all know that it’s hard to verify extreme events and precipitation due to the small statistically significance, and the characteristics of the rainfall, like the spatial distribution. In spite of all this:

- For both case studies, the PV-satellite result are within the range obtained by both PV-perturbed ensembles, and better than the control/non-perturbed ensemble member.

- The random perturbations (using a PV error climatology) captures the mismatch between PV and WV better than a manually perturbations done by an expert forecaster, at least for these case studies.
Conclusions

In the future:

- Compare performance of PV-satellite with each member of the ensemble, to see if is more *stable*. In other words, if it maintains the same position in a rank made up from the ensemble member and itself.

- Repeat the experiment for all the MEDEX events (19) used in both ensembles verification.
Comparing the PV fields of ECMWF analysis \leftrightarrow ECMWF 24 h forecast, of a large collection of MEDEX cyclones, one can define:

- **The displacement error (DE):** the minimum displacement of the 24 h forecast PV field showing local maximum correlation with the analysis PV field.

- **The intensity error (IE):** the difference between the displaced 24 h forecast PV field and analysis PV field relative to the analysis PV average.
Comparison of three different methods of perturbing the PV field
PV error climatology: Percentile levels at 300 hPa

Intensity Error

Comparison of three different methods of perturbing the PV field

M. Vich (mar.vich@uib.es)
After introducing the realistic perturbations randomly into the PV fields along the corresponding zones:

- Apply PV Inversion Technique to original and perturbed fields to obtain the balance fields (T, H and Winds).

- Define the ensemble member by the difference between the original and perturbed balance fields.