Sensitivity study of two Mediterranean tropical-like storms

LI. Fita, R. Romero, C. Ramis

Grup de meteorologia, Departament de físca, UIB, Palma de Mallorca

© Continuation of the Mediterranean tropical like storms study presented in EGU 2006 (article submitted on *Natural Hazards*, http://eady.uib.es/medicanes)

- © Continuation of the Mediterranean tropical like storms study presented in EGU 2006 (article submitted on *Natural Hazards*, http://eady.uib.es/medicanes)
- Main goal: Sensitivity study of Mediterranean tropical-like storms; 950116 medicane & 030527 medicane

- © Continuation of the Mediterranean tropical like storms study presented in EGU 2006 (article submitted on *Natural Hazards*, http://eady.uib.es/medicanes)
- Main goal: Sensitivity study of Mediterranean tropical-like storms; 950116 medicane & 030527 medicane

- © Continuation of the Mediterranean tropical like storms study presented in EGU 2006 (article submitted on *Natural Hazards*, http://eady.uib.es/medicanes)
- Main goal: Sensitivity study of Mediterranean tropical-like storms; 950116 medicane & 030527 medicane
- O Description of a 'medicane'

- © Continuation of the Mediterranean tropical like storms study presented in EGU 2006 (article submitted on *Natural Hazards*, http://eady.uib.es/medicanes)
- Main goal: Sensitivity study of Mediterranean tropical-like storms; 950116 medicane & 030527 medicane
- O Description of a 'medicane'
- MM5 simulation validation

- © Continuation of the Mediterranean tropical like storms study presented in EGU 2006 (article submitted on *Natural Hazards*, http://eady.uib.es/medicanes)
- Main goal: Sensitivity study of Mediterranean tropical-like storms; 950116 medicane & 030527 medicane
- O Description of a 'medicane'
- MM5 simulation validation
- Sector Separation

- © Continuation of the Mediterranean tropical like storms study presented in EGU 2006 (article submitted on *Natural Hazards*, http://eady.uib.es/medicanes)
- Main goal: Sensitivity study of Mediterranean tropical-like storms; 950116 medicane & 030527 medicane
- O Description of a 'medicane'
- MM5 simulation validation
- Sector Separation
- Sector separation results

- © Continuation of the Mediterranean tropical like storms study presented in EGU 2006 (article submitted on *Natural Hazards*, http://eady.uib.es/medicanes)
- Main goal: Sensitivity study of Mediterranean tropical-like storms; 950116 medicane & 030527 medicane
- O Description of a 'medicane'
- MM5 simulation validation
- Sector Separation
- Sector separation results
- © Conclusions

Description of a 'medicane'

Description of a 'medicane'

- © 'Satellite' evidences
 - Rounded cloud structure with a clear eye-like center
 - High instability
 - Strong vorticity

Description of a 'medicane'

© 'Satellite' evidences

NVIS-950116

Description of a 'medicane'

NVIS-030527

Description of a 'medicane'

Synoptic environment

Description of a 'medicane'

- Synoptic environment
 - $\ \ \,$ Upper level low (\overline{H}_{500} & \overline{PTK}_{300})

Description of a 'medicane'

Synoptic environment

Strong thermal gradients and vorticity (\overline{T}_{850} & \overline{AVOR}_{900})

Description of a 'medicane'

- Synoptic environment
 - Significant initial thermal anomaly (Tp_{850})

Description of a 'medicane'

- **Synoptic environment**
 - Absence of high amounts of humidity (RHp_{925})

Main characteristics of a 'medicane'

© Tropical like structure in the Mediterranean environment

Main characteristics of a 'medicane'

- © Tropical like structure in the Mediterranean environment
- Merge of convective and baroclinic mechanisms

Main characteristics of a 'medicane'

- © Tropical like structure in the Mediterranean environment
- Merge of convective and baroclinic mechanisms
- Medicane' evolution due to instability as a combination of SST and upper level cold low

Main characteristics of a 'medicane'

- © Tropical like structure in the Mediterranean environment
- Merge of convective and baroclinic mechanisms
- Medicane' evolution due to instability as a combination of SST and upper level cold low
- Medicane' evolution may be affected by Mediterranean basin features: Small Sea, high surrounding orography, hot and dry air from North Africa plateau, ...

General characteristics

- MM5 v3.7 (ECMWF analyses & BUFR observations)
- © 2 domains (15 i 5 km) i 23 vertical levels
- moisture scheme: graupel(reisner2)
- © cumulus: Kain-Fritsch, ∅
- Planetary Boundary Layer: Blackadar
- © Radiation scheme: cloud

General characteristics

- MM5 v3.7 (ECMWF analyses & BUFR observations)
- © 2 domains (15 i 5 km) i 23 vertical levels
- moisture scheme: graupel(reisner2)
- © cumulus: Kain-Fritsch, ∅
- Planetary Boundary Layer: Blackadar
- Radiation scheme: cloud
- © 950116 case
 - Domain 1: 150 x 120 centered at 37.0N, 17.0E
 - Domain 2: 223 x 121

General characteristics

- MM5 v3.7 (ECMWF analyses & BUFR observations)
- © 2 domains (15 i 5 km) i 23 vertical levels
- moisture scheme: graupel(reisner2)
- © cumulus: Kain-Fritsch, ∅
- Planetary Boundary Layer: Blackadar
- Radiation scheme: cloud
- © 950116 case
 - Domain 1: 150 x 120 centered at 37.0N, 17.0E
 - Domain 2: 223 x 121
- © 030527 case
 - Domain 1: 150 x 150 centered at 39.0N, 3.0E

Domain 2: 181 x 127

Control simulation results

Medicane' properly simulated: small dimensions vortex, similar trajectory

Control simulation results

Medicane' properly simulated: small dimensions vortex, similar trajectory

PSEALVLC-950116

Control simulation results

Medicane' properly simulated: small dimensions vortex, similar trajectory

PSEALVLC-030527

AB: Isothermic expansion

- Increase of energy from sea surface heat and moist fluxes
- SST sensitivity

Bo: Adiabatic expansion

- Adiabatic expansion of air
- © Conservation of angular momentum

oo': Isothermic compression

- Radiative cooling
- Sensitivity to upper-level temperature

o'A: Compression

© Conservation of angular momentum

Factor separation

Description of factors

ତ f_1 : LHFsea

Factor separation

Description of factors

- - Suppression of the Latent Heat Flux from the Sea
 - Effect on the energy source of the storm

Factor separation

Description of factors

 $o f_2 : SSHF$

Description of factors

- - Suppression of the Surface Sensible Heat Flux
 - Effect on the boundary layer: mixing efficiency, heat and moist transport

Description of factors

 \odot f_3 : PVU

Description of factors

- ତ f_2 : SSHF
- - Modification of the Upper level cold low
 - 10% Decrease of almost all the ErPV upper level positive anomaly (until 500 hPa) of ECMWF analyses
 - Effect on the vertical instability and efficiency of the storm

Description of factors

```
ତ f_1: LHFsea
```

 $o f_2 : SSHF$

 \odot f_3 : PVU

0305251200 ErPVp (every 0.5 10⁻⁶m².K/s.kg, [change at 0])

Description of factors

```
ତ f_1: LHFsea
```

 $o f_2 : SSHF$

 \odot f_3 : PVU

0305251200 ErPVpBox (every 0.5 10⁻⁶m².K/s.kg)

Description of factors

 $o f_2 : SSHF$

 $o f_3 : PVU$

Description of factors

```
\odot f_2: SSHF
```

- $o f_4 : SST$

Description of factors

- \odot f_2 : SSHF
- \odot f_3 : PVU
- - Modification of the Sea Surface Temperature

 - Fifect on the energy source of the storm

Simulations

 \odot Study of the factors $\{i, j, ...n\}$ on forecasted field f

Simulations

ତ s_0 : Control simulation (f_{1234})

- \circ s_0 : Control simulation (f_{1234})
- \circ s_1 : Simulation without LHFsea (f_{234})

- \circ s_0 : Control simulation (f_{1234})
- \circ s_1 : Simulation without LHFsea (f_{234})
- \circ s_2 : Simulation without SSHF (f_{134})

- \circ s_0 : Control simulation (f_{1234})
- \circ s_1 : Simulation without LHFsea (f_{234})
- \circ s_2 : Simulation without SSHF (f_{134})
- \circ s_3 : Simulation -10% UPV (f_{124})

- \circ s_0 : Control simulation (f_{1234})
- \circ s_1 : Simulation without LHFsea (f_{234})
- \circ s_2 : Simulation without SSHF (f_{134})
- \circ s_3 : Simulation -10% UPV (f_{124})
- \circ s_4 : Simulation SST -5°K (f_{123})

- \circ s_0 : Control simulation (f_{1234})
- \circ s_1 : Simulation without LHFsea (f_{234})
- \circ s_2 : Simulation without SSHF (f_{134})
- \circ s_3 : Simulation -10% UPV (f_{124})
- \circ s_4 : Simulation SST -5°K (f_{123})
- \circ s_{12} : Simulation without LHFsea & SSHF (f_{34})

- \circ s_0 : Control simulation (f_{1234})
- \circ s_1 : Simulation without LHFsea (f_{234})
- \circ s_2 : Simulation without SSHF (f_{134})
- \circ s_3 : Simulation -10% UPV (f_{124})
- \circ s_4 : Simulation SST -5°K (f_{123})
- \circ s_{124} : Simulation without LHFsea, SSHF & SST -5°K (f_3)
- \circ s_{1234} : Simulation without LHFsea, SSHF, -10% UPV & SST -5°K (f_0)

Effects

- \odot Forecasted field f
 - Central Sea level pressure
 - Maximal radial-averaged horizontal wind speed

Effects

- \odot Forecasted field f
 - Central Sea level pressure
 - Maximal radial-averaged horizontal wind speed

$$f_i = e_i + f_0$$

$$f_{ij} = e_{ij} + e_1 + e_2 + e_0$$

$$f_{ijk} = e_{ijk} + e_{ij} + e_{ik} + e_{jk} + e_i + e_j + e_k + e_0$$

Effects

- \odot Forecasted field f
 - Central Sea level pressure
 - Maximal radial-averaged horizontal wind speed

$$f_i = e_i + f_0$$

$$f_{ij} = e_{ij} + e_1 + e_2 + e_0$$

$$f_{ijk} = e_{ijk} + e_{ij} + e_{ik} + e_{jk} + e_i + e_j + e_k + e_0$$

© Effect e

Effects

- Sometimes of the following of the following in the fol
 - Central Sea level pressure
 - Maximal radial-averaged horizontal wind speed
 - $f_i = e_i + f_0$
 - $f_{ij} = e_{ij} + e_1 + e_2 + e_0$
 - $f_{ijk} = e_{ijk} + e_{ij} + e_{ik} + e_{jk} + e_i + e_j + e_k + e_0$
- © Effect e
 - $e_i = f_i f_0 \equiv s_{ikl} s_{iikl}$
 - $e_{ij} = f_{ij} (f_i + f_j) + f_0 \equiv s_{kl} (s_{jkl} s_{ilk}) + s_{ijkl}$
 - $e_{ijk} = f_{ijk} (f_{ij} + f_{ik} + f_{jk}) + (f_i + f_j + f_k) f_0 \equiv$ $s_l - (s_{kl} + s_{il} + s_{il}) + (s_{ikl} + s_{ikl} + s_{ijl}) - s_{ijkl}$
 - $e_{ijkl} \equiv s_0 (s_l + s_k + s_j + s_i) + (s_{kl} + s_{jl} + s_{jk} + s_{il} + s_{ik} + s_{il} + s_{il} + s_{ik} + s_{il} + s_$

Central pressure at Sea surface level

27¹²

Central pressure at Sea surface level

Central pressure at Sea surface level

Maximal radial average speed at 950 hPa

Maximal radial average speed at 950 hPa

Maximal radial average speed at 950 hPa

Trajectories

MM5 simulations in good agreement with observed cases

- MM5 simulations in good agreement with observed cases
- Solution Both medicanes showed similar behaviour and effects dependencies, in different degree

- MM5 simulations in good agreement with observed cases
- Both medicanes showed similar behaviour and effects dependencies, in different degree
- © Central Sea surface level pressure and maximal radial-averaged wind speed showed similar major effect dependencies with different behaviour

- MM5 simulations in good agreement with observed cases
- Both medicanes showed similar behaviour and effects dependencies, in different degree
- © Central Sea surface level pressure and maximal radial-averaged wind speed showed similar major effect dependencies with different behaviour
- Medicanes do not show same major dependence

- MM5 simulations in good agreement with observed cases
- Both medicanes showed similar behaviour and effects dependencies, in different degree
- © Central Sea surface level pressure and maximal radial-averaged wind speed showed similar major effect dependencies with different behaviour
- Medicanes do not show same major dependence
- Much more influence in synergies than individual effects

- MM5 simulations in good agreement with observed cases
- Both medicanes showed similar behaviour and effects dependencies, in different degree
- © Central Sea surface level pressure and maximal radial-averaged wind speed showed similar major effect dependencies with different behaviour
- Medicanes do not show same major dependence
- Much more influence in synergies than individual effects
- Major dependencies related to Upper level PV anomalies and Sea Surface Temperature

- MM5 simulations in good agreement with observed cases
- Both medicanes showed similar behaviour and effects dependencies, in different degree
- © Central Sea surface level pressure and maximal radial-averaged wind speed showed similar major effect dependencies with different behaviour
- Medicanes do not show same major dependence
- Much more influence in synergies than individual effects
- Major dependencies related to Upper level PV anomalies and Sea Surface Temperature
- Medicane trajectory high dependent on upper level PV anomalies

- MM5 simulations in good agreement with observed cases
- Both medicanes showed similar behaviour and effects dependencies, in different degree
- © Central Sea surface level pressure and maximal radial-averaged wind speed showed similar major effect dependencies with different behaviour
- Medicanes do not show same major dependence
- Much more influence in synergies than individual effects
- Major dependencies related to Upper level PV anomalies and Sea Surface Temperature
- Medicane trajectory high dependent on upper level PV anomalies
- Deeper study need to be done to study each effect properly

Thank you for your attention !!

