

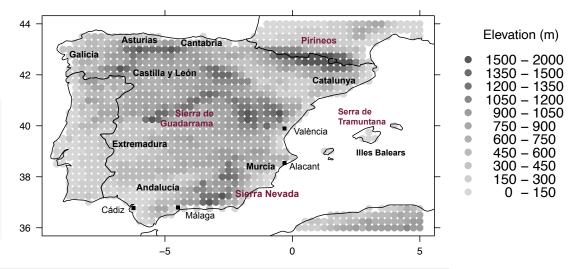
Assessment of the future climate potential for tourism over Spain using a combination of downscaling approaches and quantitative impact models

M.Cardell, A. Amengual and R. Romero

Grup de Meteorologia, Departament de Física, Universitat de les Illes Balears (UIB), Palma, Mallorca, Spain

E-mail: maria.cardell@uib.cat

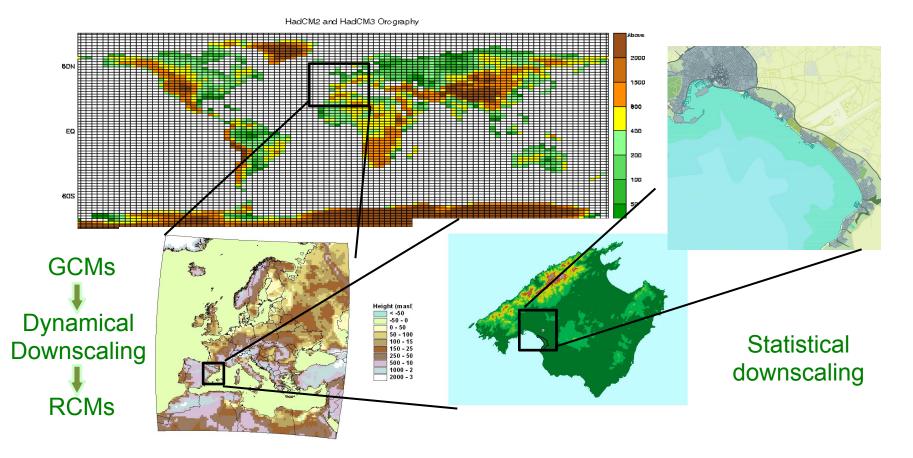
1. Motivations


- The Mediterranean region is among the preferred worldwide tourist destinations and it is a highly sensitive area to climate change impacts (Stocker et al., 2013).
- According to the UNWTO (2018), Spain occupied the 2nd place in the ranking of international tourism destinations with 81.8 million arrivals and 68\$ US billion receipts only in 2017.

The weather conditions and environmental assets of Spain enable the development of *several types of tourism*, in addition to the 3S tourism (sun, sea and sand)

1. Motivations

Climate change will unequally affect tourist activities as they require different weather conditions and show quite diverse physical demand (Bafaluy et al., 2013).



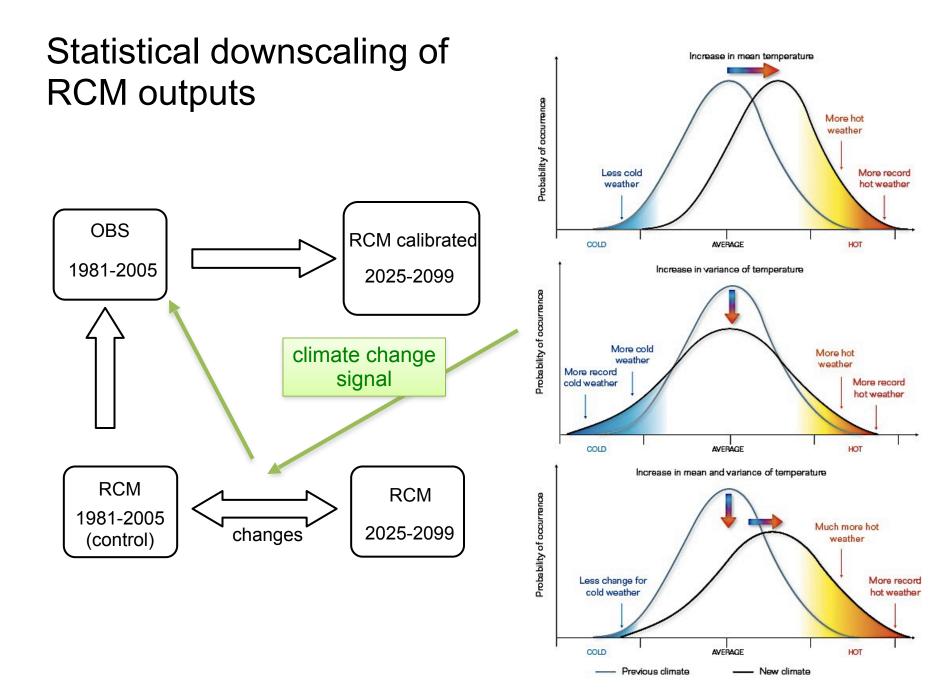
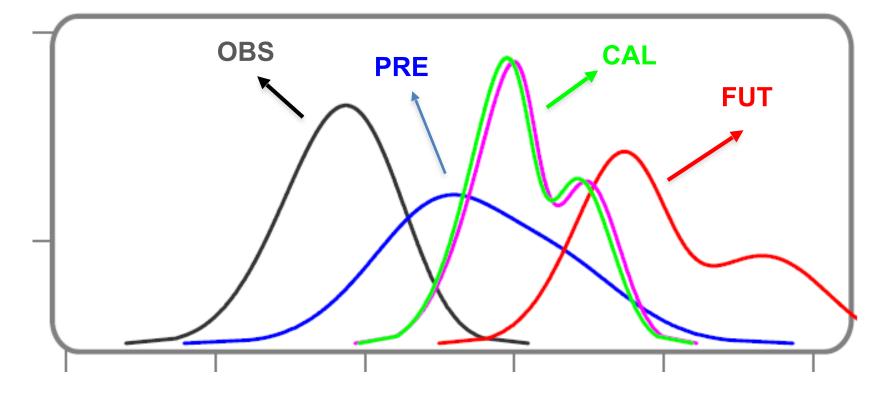
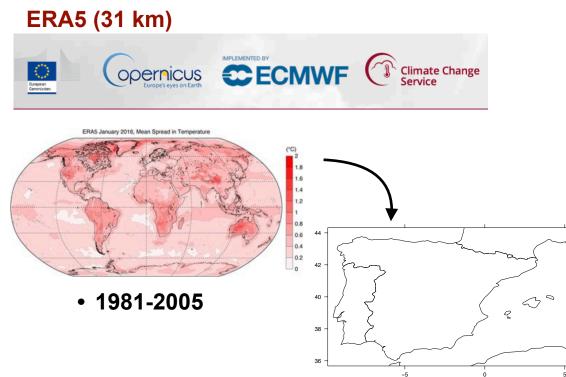

Tourist activity	High season	Number of visitors per year	Spent money (M€/year)	Most visited region
Cultural	All	14,5 million	15.348	Catalunya, Illes Balears and València
Sailing	Summer	<u> </u>		Illes Balears, Catalunya and València
Golf	Spring	1.6 million	4.640	Andalucía, Castilla y León and Catalunya
Hiking	Spring and autumn	1/2 million	3.283	Pirineos and Serra de Tramuntana (Mallorca)
Cycling	Spring and autumn	160.000*	2.258	Mallorca, Catalunya València and Andalucía
Football	Winter	200 teams	NA	Málaga and Cádiz (Anda- lucía), Murcia and Alacant

Table 1: Available information about the main socio-economic aspects related to each kind of tourist activity in Spain. *Data correspond only to the Mallorca Island. NA stands for data not available.

Tools for exploring climate change impacts GCMs \rightarrow RCMs

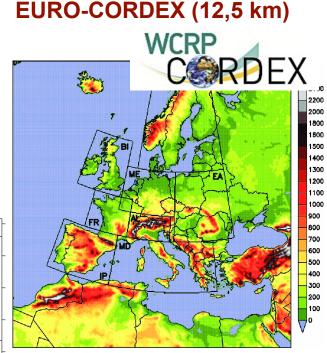
- Regional scales: Dynamical downscaling. Regional Climate Model (RCMs).
- Local scales: Statistical downscaling and model calibration from RCMs.




Quantile-Quantile adjustment

(Cardell et al. 2019)

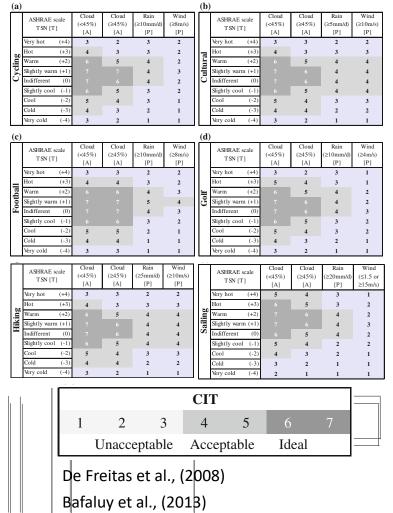
$$p_i = o_i + g\overline{\Delta} + f\Delta'_i,$$



2. Database and methodology

Daily series of surface:

- 1. Maximum temperature
- 2. Total precipitation
- 3. Mean wind speed
- 4. Mean fraction of cloud cover
- 5. Mean relative humidity


Future regional scenarios **rcp8.5**

Changes in calibrated CDFs between a 25-year past (i.e. control/observed; 1981-2005) and successive 25-year RCM time-slices (2021-2045; 2046-2070; **2071-2095**).

Driving GCM	RCM	Institute
EC-EARTH	HIRHAM5	DMI

2. Database and methodology

 Weather typology matrices for the different kinds of tourism and Climate Index for Tourism (CIT) rating scale

Universal Thermal Climate Index (UTCI)

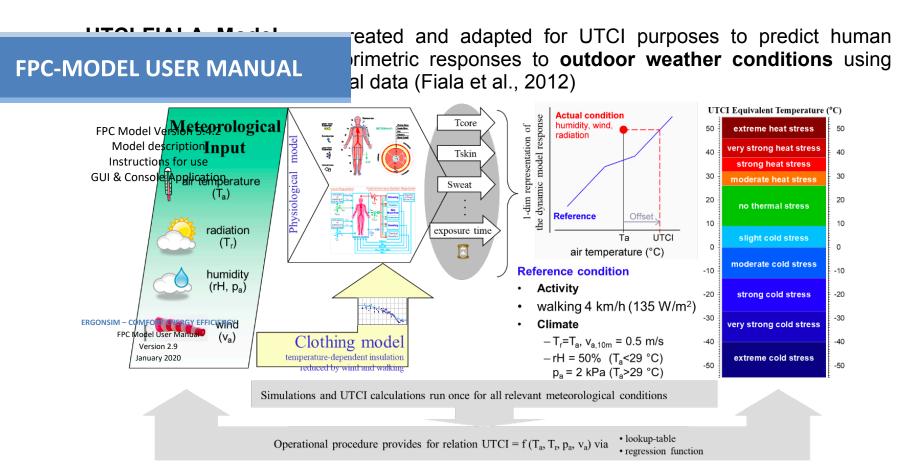
UTCI (°C) range	Stress Category
above +46	extreme heat stress
+38 to +46	very strong heat stress
+32 to +38	strong heat stress
+26 to +32	moderate heat stress
+9 to +26	no thermal stress
+9 to 0	slight to moderate cold
0 to -13	stress
-13 to -27	strong cold stress
-27 to -40	very strong cold stress
below -40	extreme cold stress

The UTCI (in degree Celsius) is defined as the air temperature (Ta) of the reference condition causing the same human body response as actual conditions.

	ASHRAE sca TSN [T]	ıle	Cloud (<45%) [A]	Cloud (≥45%) [A]	Rain (≥20mm/d) [P]	Wind (≤1.5 or ≥15m/s)
	Very hot	(+4)	5	4	3	1
	Hot	(+3)	6	5	3	2
ing	Warm	(+2)	7		4	2
Sailing	Slightly warm	(+1)	7		4	3
\mathbf{S}	Indifferent	(0)	6	5	4	2
	Slightly cool	(-1)	5	4	2	2
	Cool	(-2)	4	3	2	1
	Cold	(-3)	3	2	1	1
	Very cold	(-4)	2	1	1	1

2. Database and methodology

Quantitative analysis of thermal system performance, human comfort and physiological response in:


• Architecture

ERGONSIM

Human Thermal Modelling

- Automotive/aerospace industries
- Clothing research

- Medical engineering
- Biometeorology

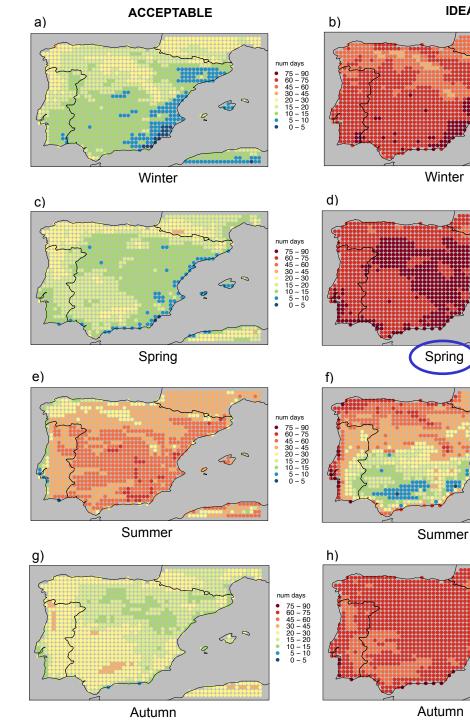
• **RayMan Pro** A tool for Applied Climatology. Modelling of <u>Mean Radiant Temperature</u> and Thermal Indices

UTCI-FIALA Model

Initial conditions. Thermo-neutral physiological conditions. A steady state exposure of a reclining (nude) person to an environment of 30°C, still air, no thermoregulation.

Simulated person. An average (35 years old, unisex) person weighting 71.4 kg, 169.7 cm tall, with a skin surface area of 1.83 m², and body fat content of 22.6% (16.17 kg in total), and an average body density of 1.05 g/cm³.

Air exposure boundary conditions


- Mean radiant temperature
- Sun elevation
- Direct and diffuse solar radiation
- Maximum temperature
- Mean relative humidity
- Mean wind speed

- Time exposure <u>(120 min, 25</u> time steps of 5 min)
- Clothing
- Activity level (met)

	CULTURAL	SAILING	GOLF	HIKING	CYCLING	FOOTBALL
Activity level (met)	2.0	2.5	2.5	3.0	4.0	5.0
Clothing insulation	0.5	0.3	0.4	0.3	0.3	0.3

CULTURAL Present climate potential

CIT										
1	2	3	4	5	6	7				
	Unaccep	table	Accep	table	Ideal					

IDEAL

Winter

Spring

num days

 $\begin{array}{c} 75 - 90\\ 60 - 75\\ 45 - 60\\ 30 - 45\\ 20 - 30\\ 15 - 20\\ 10 - 15\\ 5 - 10\\ 0 - 5\end{array}$

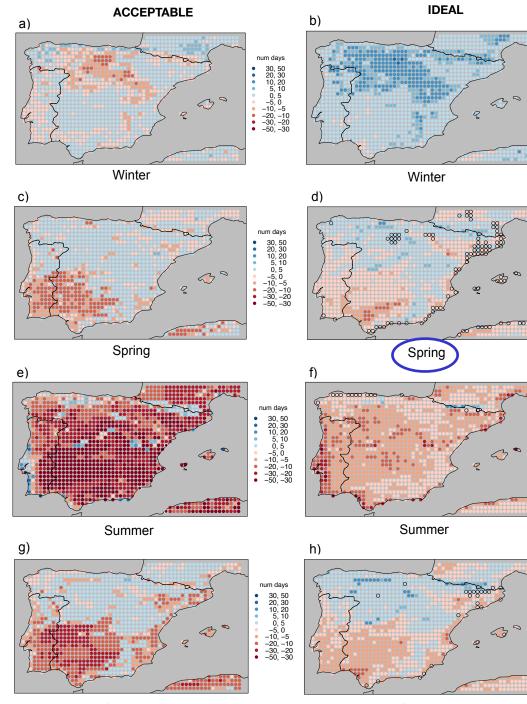
num days

 $\begin{array}{c} 75 - 90\\ 60 - 75\\ 45 - 60\\ 30 - 45\\ 20 - 30\\ 15 - 20\\ 10 - 15\\ 5 - 10\\ 0 - 5\end{array}$

num days

 $\begin{array}{c} 75 - 90\\ 60 - 75\\ 45 - 60\\ 30 - 45\\ 20 - 30\\ 15 - 20\\ 10 - 15\\ 5 - 10\\ 0 - 5\end{array}$

num days


 $\begin{array}{c} 75 - 90\\ 60 - 75\\ 45 - 60\\ 30 - 45\\ 20 - 30\\ 15 - 20\\ 10 - 15\\ 5 - 10\\ 0 - 5\end{array}$

 \sim G

4

CULTURAL Future change in climate potential

			CIT			
1	2	3	4	5	6	7
τ	Jnaccep	otable	Accep	table	Ideal	

Autumn

Autumn

num days

•

:

30, 50 20, 30 10, 20 5, 10 0, 5 -5, 0 -10, -5 -20, -10 -30, -20 -50, -30

num days

•

:

:

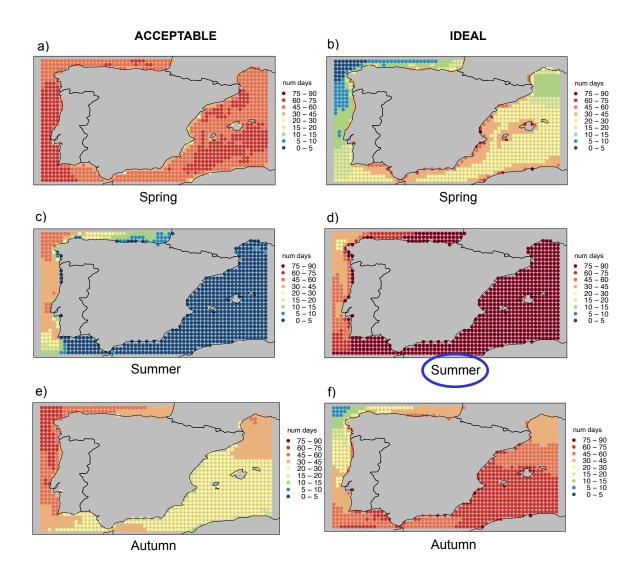
30, 50 20, 30 10, 20 5, 10 0, 5 -5, 0 -10, -5 -20, -10 -30, -20 -50, -30

num days

•

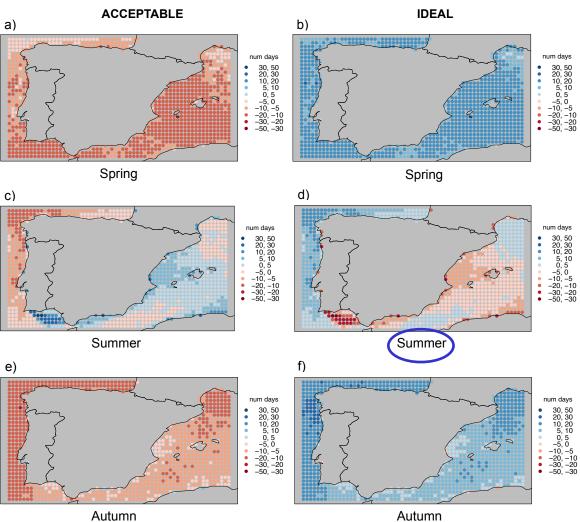
30, 50 20, 30 10, 20 5, 10 0, 5 -5, 0 -10, -5 -20, -10 -30, -20 -50, -30

num days

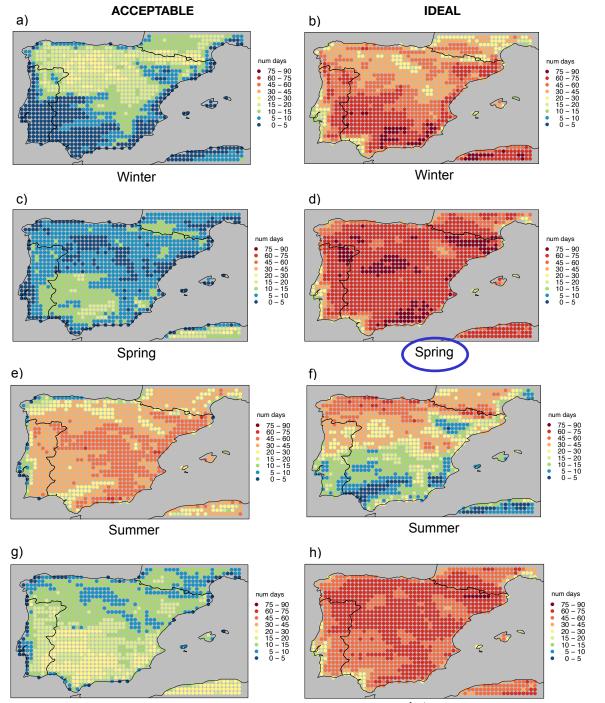

•

•

30, 50 20, 30 10, 20 5, 10 0, 5 -5, 0 -10, -5 -20, -10 -30, -20 -50, -30

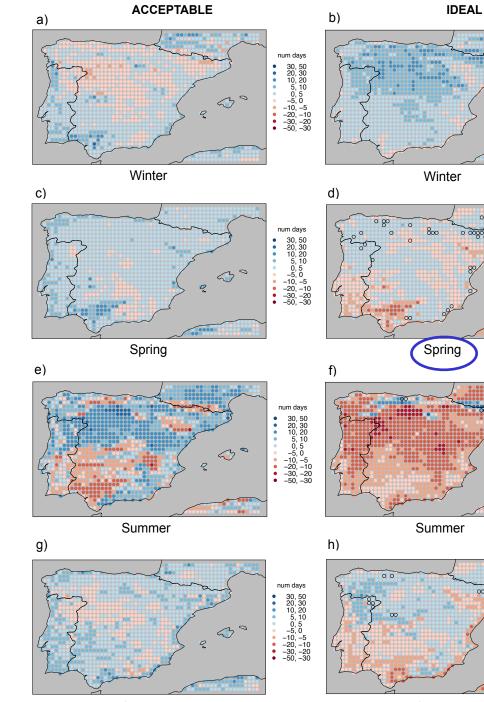

SAILING Present climate potential

			CIT			
1	2	3	4	5	6	7
	Unaccep	otable	Accep	table	Ideal	


SAILING Future change in climate potential

			CIT			
1	2	3	4	5	6	7
	Unaccep	table	Accep	table	Ideal	

GOLF Present climate potential


			CIT			
1	2	3	4	5	6	7
	Unaccep	otable	Accep	otable	Ideal	

Autumn

GOLF Future change in climate potential

			CIT			
1	2	3	4	5	6	7
	Unaccep	table	Accep	table	Ideal	

Autumn

Autumn

num days

• :

•

:

0 3

2

00

....

0 0000

30, 50
20, 30
10, 20
5, 10
0, 5
-5, 0
-10, -5
-20, -10
-30, -20
-50, -30

num days

•

٠ :

0

00

-

0 3

27 0

0

30, 50 20, 30 10, 20 5, 10 0, 5 -5, 0 -10, -5 -20, -10 -30, -20 -50, -30

num days

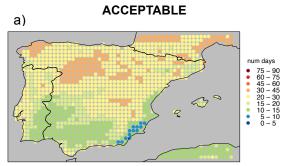
30, 50 20, 30 10, 20 5, 10 • .

5, 10 0, 5 -5, 0 -10, -5 -20, -10 -30, -20 -50, -30

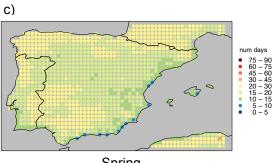
num days 30, 50 20, 30 10, 20 5, 10 0, 5 -5, 0 -10, -5 -20, -10 -30, -20 -50, -30

• •

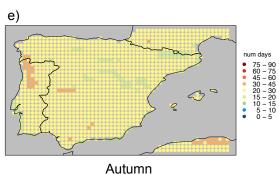
•

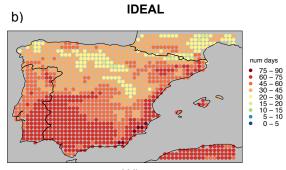

• •

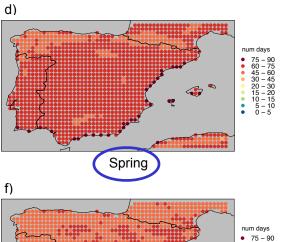
٠ :

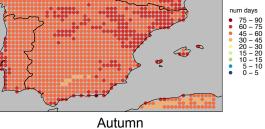

HIKING

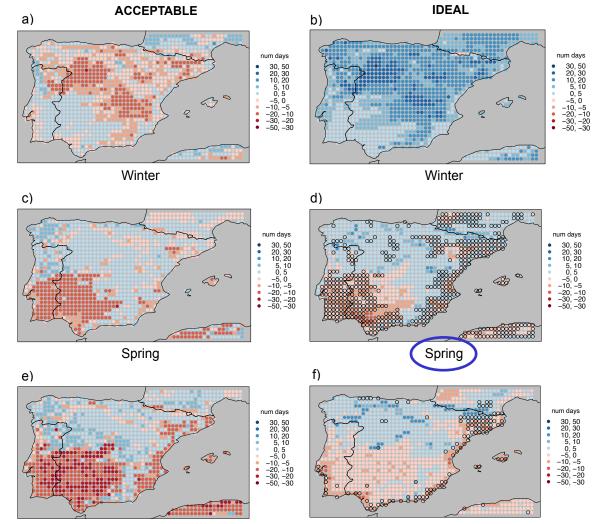
Present climate potential


			CIT			
1	2	3	4	5	6	7
1	Unaccep	otable	Accep	table	Ideal	



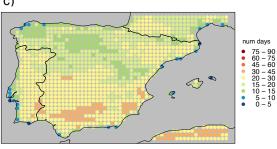




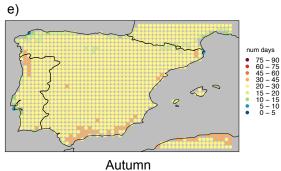


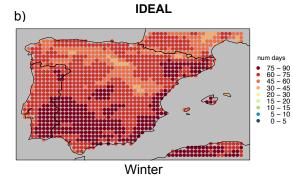
HIKING Future change in climate potential

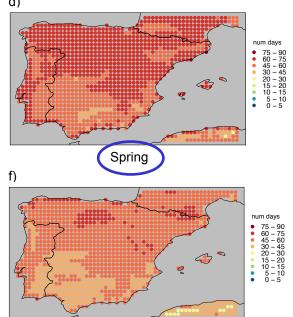

CIT						
1	2	3	4	5	6	7
Unacceptable		Acceptable		Ideal		

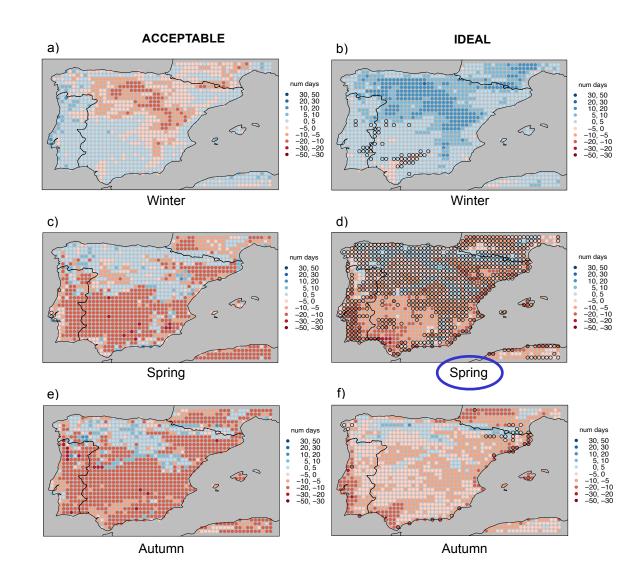


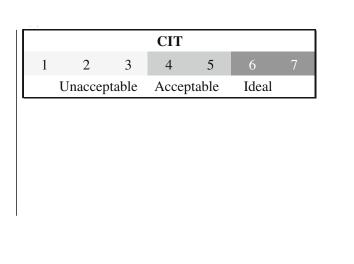
Autumn

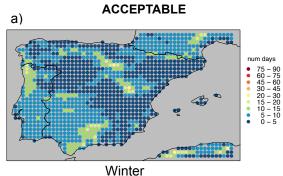

CYCLING Present climate potential

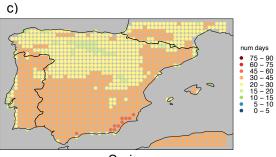

CIT							
1	2	3	4	5	6	7	
	Unacceptable		Acceptable		Ideal		

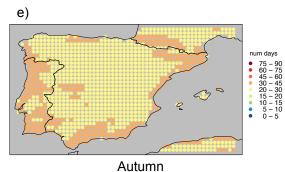


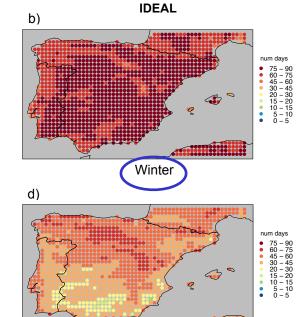


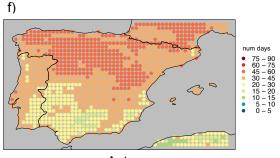


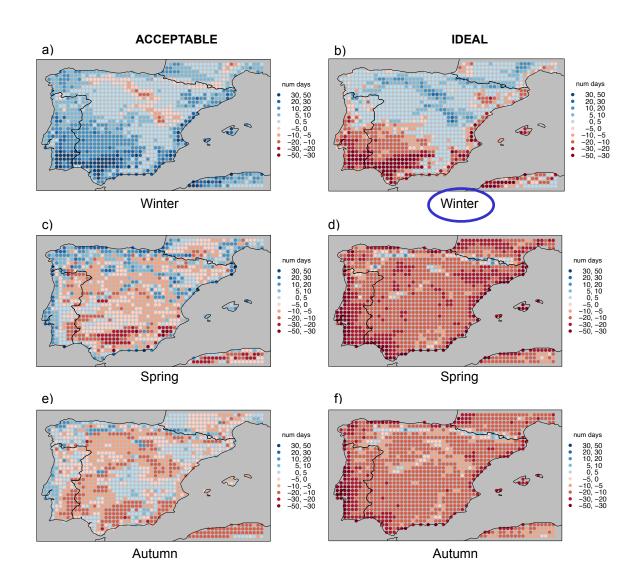

CYCLING Future change in climate potential


CIT						
1	2	3	4	5	6	7
Unacceptable		Acceptable		Ideal		


FOOTBALL Present climate potential







FOOTBALL Future change in climate potential

СІТ						
1	2	3	4	5	6	7
Unacceptable		Acceptable		Ideal		

4. Future work

- Use the whole of RCMs from the EURO-CORDEX project to compute the UTCI and compare shifts through ensemble mean strategies.
- Explore the seasonal CIT distribution across the Mediterranean which is the principal economic centre of the tourist activities in Europe.

Acknowledgements:

COASTEPS CGL2017-82868-R (AEI/FEDER, UE) EXTREMO CGL2014-52199-R (AEI/FEDER, UE) MINECO (Spain)

FPI-CAIB (FPI/1931/2016, Conselleria d'Innovació, Recerca i Turisme del

Govern de les Illes Balears and the Fons Social Europeu)

Cardell M, Romero R, Amengual A, Homar V, Ramis C (2019). A quantile-quantile adjustment of the Euro-cordex projections for temperatures and precipitation. International Journal of Climatology 39(6):29012918. https://doi.org/10.1002/joc.5991

Cardell M, Amengual A, Romero R (2021). Assessment of the present and future climate potential for tourism over Spain. Submitted to International Journal of Climatology

MINISTERIO DE ECONOMÍA, INDUSTR Y COMPETITIVIDAD

Universitat de les Illes Balears

