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?Final goal: To improve the hydro-meteorological tools used in the Western 
Mediterranean Region for the surveillance and prediction of flash flood events

http://hydroptimet.medocc.org

?Case studies:

Catalogne, 9-10 June 2000
Cévennes, 8-9 September 2002
Piémont-I, 24-25 November 2002
Piémont-II, 25-26 November 2002
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METHODOLOGY

?Ensemble of mesoscale numerical simulations of each event with the MM5 non-hydrostatic 
model, after perturbing in a systematic way the upper-level disturbance (sensitivity analysis)

?These perturbations are introduced to the initial conditions by applying a potential vorticity 
(PV) inversion procedure to the positive PV anomaly associated with the upper-level trough 
(physically consistent balance)

?Guidance from the MM5-adjoint model, which consistently showed the highest sensitivities of 
the dynamical control of heavy rainfall to the flow configuration about the upper-level 
disturbance on the day before (precursor agent)
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CHARACTERISTICS OF THE CHARACTERISTICS OF THE 
SIMULATIONSSIMULATIONS

?Three domains: 54, 18 and 6 km with 
two-way interaction. 

?Lambert Conformal map projection.

?82x82x24 grid points. 

?Global analysison standard pressure 
surfaces from NCEP (available at 00 and 
12 UTC with 2.5º horizontal resolution) 
have been used to set initial and 
boundary conditions of coarse domain.

?Time steps for model integration are 
18s (fine domain), 54s (middle domain) 
and 162s (coarse domain).

?36 hours simulation (from 09/06/00 at 
0000 UTC to 10/06/00 at 1200 UTC).

?The analysis were improved using 
surface and upper -air observations.

?Graupel and ice number concentration (Reisner et al., 1998).

?Betts-Miller (Betts and Miller, 1986; 1993) was used to 
calculate moist convection effects on the coarse domain and 
Kain-Fritsch scheme (Kain and Fritsch, 1990) on the second 
domain (for the inner domain no convective scheme was used).

?The sea level surface temperature remains constant during 
the set of simulations.
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MM5MM5--v3 MODEL v3 MODEL 

CHARACTERISTICS OF THE CHARACTERISTICS OF THE 
SIMULATIONSSIMULATIONS

?Graupel and ice number concentration (Reisner et al., 1998).

?Kain-Fritsch scheme (Kain and Fritsch, 1990) was used to 
calculate moist convection effects on the coarse and second 
domains (for the inner domain no convective scheme was 
used).

?The sea level surface temperature remains constant during 
the set of simulations.

CÉVENNES 8CÉVENNES 8--10 SEPTEMBER 200210 SEPTEMBER 2002

?Three domains: 54, 18 and 6 km with 
two-way interaction. 

?Lambert Conformal map projection.

?82x82x24 grid points. 

?Global analysison standard pressure 
surfaces from NCEP (available at 00 and 
12 UTC with 2.5º horizontal resolution) 
have been used to set initial and 
boundary conditions of coarse domain.

?Time steps for model integration are 
18s (fine domain), 54s (middle domain) 
and 162s (coarse domain).

?55 hours simulation (from 08/09/02 at 
0000 UTC to 10/09/02 at 0600 UTC).

?The analysis were improved using 
surface and upper -air observations.

Catalogne - Control

a) b)

c) d)

Cévennes - Control

Cévennes - Control Cévennes - Control

Cévennes - Control

08 SEP 02

00 UTC

09 SEP 02

00 UTC

H500

T500

ErPV_Is
(Shaded)

SLP

W.950



5

a) b)

Cévennes - Control

09 SEP 02 AT 00 UTC

W.950

A.R. 367 mm.

SLP

PRWA

MM5MM5--v3 MODEL v3 MODEL 

CHARACTERISTICS OF THE CHARACTERISTICS OF THE 
SIMULATIONSSIMULATIONS

?Graupel and ice number concentration (Reisner et al., 1998).

?Betts-Miller (Betts and Miller, 1986; 1993) was used to 
calculate moist convection effects on the coarse domain and 
Kain-Fritsch scheme (Kain and Fritsch, 1990) on the second 
domain (for the inner domain no convective scheme was used).

?The sea level surface temperature remains constant during 
the set of simulations.

PIÉMONT 24PIÉMONT 24--26 SEPTEMBER 200226 SEPTEMBER 2002

?Three domains: 54, 18 and 6 km with 
two-way interaction. 

?Lambert Conformal map projection.

?82x82x24 grid points. 

?Global analysison standard pressure 
surfaces from ECMWF (available at 00, 
06, 12 and 18 UTC with 0.3º horizontal 
resolution) have been used to set initial 
and boundary conditions of coarse 
domain.

?Time steps for model integration are 
18s (fine domain), 54s (middle domain) 
and 162s (coarse domain).

?36 hours simulation (from 24/11/02     
at 0000 UTC to 25/11/02 at 1200 UTC    
for Piémont-I, and from 25/11/02 at   
0000 UTC to 26/11/02 at 1200 UTC for 
Piémont-II) .

?The analysis were improved using 
surface and upper -air observations.
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SUMMARIZING …SUMMARIZING …

The results (from only four cases !!!) generally show that:

?The events dominated by mesoscale low-level disturbances (Catalogne and Piémont-
II) are very sensitive to the initial uncertainties, such that the heavy rainfall location 
and magnitude are, in some of the experiments, strongly changed in response to the 
“forecast errors” of the cyclone’s characteristics (genesis area, shape, intensity, 
translational speed, …)

?In contrast, the other situations (Cévennes and Piémont-I) dominated by a large-scale 
disturbance that regulates a moist LLJ, show higher predictability. Both the action of 
the Alps range, in enhancing the LLJ, and the role of the local topography in providing 
upward motion to the low-level warm, moist maritime air-mass, improves the 
predictability of this kind of episodes.

?The predictability in this study has been associated to the mode l capability of 
providing good guidance of the flash flood situations in each case and a reasonably 
correct localization of the affected areas, under arbitrary perturbations of the IC. The 
same methodology could be used to design an EPS forecasting tool, provided the real 
climatology of upper-level PV error is considered.

?However, hydrological considerations are omitted in the present study being aware of 
current limitations of mesoscale prediction systems for providing a good quantitative 
rainfall forecast at hydrographical basin scale.
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Thank you very much for 
your attention !!!


