MOTIVATION Medicanes are physically analogous to tropical cyclones (warm-core, surface flux-driven). These extreme windstorms pose serious threat to the affected islands and coastal regions and can adversely affect open sea activities such as fishing, cruises and recreational boating: - Future changes in frequency, intensity or regional variability? - No systematic effort to answer this question in the context of CMIP5 ## THIS WORK: Statistical-deterministic approach Developed by Emanuel and his team in the context of the long-term wind risk associated with tropical cyclones: - Low-cost generation of thousands of synthetic storms - Statistically robust assessment of risk (e.g. return periods for winds) - Genesis: Random draws from observed PDF or Random seeding - Track: Randomly varying synthetic winds (respecting climatology) - Environment: Previous winds + monthly-mean thermodynamic fields - Intensity and radial distribution of winds: CHIPS model ## **ADAPTATION OF THE METHOD** The separation of timescales made in the tropics between the synthetic wind field (fast scale) and the thermodynamic environment (slow scale) is not appropriate to represent the movement, growth and decay of mid-latitude weather systems. In addition, existing data of medicane genesis is too sparse to form a reasonable PDF of genesis, and random seeding would be very inefficient: - For each month, decomposition through PCA of 10-day synoptic evolutions of z250, z850, T600, R600 and PINT into the new space of independent PCs - Random selection + random perturbation of the set of PCs - This perturbed set of PCs is converted back into physical space - This is tantamount to generating 10-day sequences of spatiotemporal coherent z250, z850, T600, R600 and PINT synthetic fields which also respect their mutual covariances - Potential Genesis: Based on the GENIX parameter | GCM-01
ACCESS1.0
CSIRO and BOM
(Australia) | | GCM-02
ACCESS1.3
CSIRO and BOM
(Australia) | | GCM-06
CanESM2
Cent. Clim. Mod. Anal.
(Canada) | | GCM-07
CCSM4
NCAR
(USA) | | GCM-11
CNRM-CM5
CNRM and CERFACS
(France) | | GCM-12
CSIRO-Mk3.6.0
QCCCE and CSIRO
(Australia) | | |---|---|--|-----------------------|---|---|---|---------------------|--|---|--|-------------| | LON 1.88° x LAT 1.25° | | LON 1.88° x LAT 1.25° | | LON 2.81° x LAT 2.79° | | LON 1.25° x LAT 0.94° | | LON 1.41° x LAT 1.40° | | LON 1.88° x LAT 1.86° | | | GCM-03
BCC-CSM1.1
Beijing Climate Center
(China) | | GCM-04
BCC-CSM1.1(m)
Beijing Climate Center
(China) | | GCM-08
CMCC-CESM
Cent. EuroMed C.Clim.
(Italy) | | GCM-09
CMCC-CM
Cent. EuroMed C.Clim.
(Italy) | | GCM-13
EC-EARTH
EC-Earth Consortium
(Europe) | | GCI
FGOA
LASG-
(Ch | CESS | | LON 2.81° x LAT 2.79° | | LON 1.13° x LAT 1.12° | | LON 3.75° x LAT 3.71° | | LON 0.75° x LAT 0.75° | | LON 1.13° x LAT 1.12° | | LON 2.81° x LAT 2.81° | | | Вє | GCM-05
BNU-ESM
Beijing Normal University
(China) | | HISTORICAL scenario | | CMCC
Cent. Eurol | M-10
C-CMS
Med C.Clim.
aly) | RCI
scen | P85 GFD | | <u>M-15</u>
CM3
GFDL
SA) | | | L | LON 2.81° x LAT 2.79° | | 1986-2005 | | LON 1.88° x LAT 1.86° | | 2081- | ·2100 LON 2.50° | | x LAT 2.00° | | | GCM-16
GFDL-ESM2G
NOAA GFDL
(USA) | | GCM-17
GFDL-ESM2M
NOAA GFDL
(USA) | | GCM-21
IPSL-CM5A-MR
IPSL
(France) | | GCM-22
IPSL-CM5B-LR
IPSL
(France) | | GCM-26
MPI-ESM-LR
Max Planck Int. Meteor.
(Germany) | | GCM-27
MPI-ESM-MR
Max Planck Int. Meteor.
(Germany) | | | LON 2.50° x LAT 2.00° | | LON 2.50° x LAT 2.00° | | LON 2.50° x LAT 1.27° | | LON 3.75° x LAT 1.89° | | LON 1.88° x LAT 1.86° | | LON 1.88° x LAT 1.86° | | | GCM-18
HadGEM2-CC
Met Office Hadley Cent
(UK) | | GCM-19
INM-CM4
Rus. Inst. Num. Math.
(Russia) | | GCM-23
MIROC5
U.Tok-NIES-JAMSTEC
(Japan) | | GCM-24
MIROC-ESM
U.Tok-NIES-JAMSTEC
(Japan) | | GCM-28
MRI-CGCM3
Meteor. Res. Inst.
(Japan) | | GCM-29
MRI-ESM1
Meteor. Res. Inst.
(Japan) | | | LON 1.88° x LAT 1.25° LON 2 | | LON 2.00° | x LAT 1.50° LON 1.41° | | x LAT 1.40° LON 2.81° | | LAT 2.79° LON 1.13° | | x LAT 1.12° LON 1.13° | | x LAT 1.12º | | GCM-20
IPSL-CM5A-LR
IPSL
(France) | | | | | GCM-25
MIROC-ESM-CHEM
U.Tok-NIES-JAMSTEC
(Japan) | | | | GCM-30
NorESM1-M
Nor. Clim. Cent.
(Norway) | | | | LON 3.75° x LA | | LAT 1.89º | .89° | | LON 2.81° x LAT 2.79° | | | | LON 2.50° x LAT 1.90° | | | | GCM-01
ACCESS1.0
22539 tracks
7521 survivors | | GCM-02
ACCESS1.3
28304 tracks
8335 survivors | | GCM-06
CanESM2
14750 tracks
3843 survivors | | GCM-07
CCSM4
20560 tracks
6236 survivors | | GCM-11
CNRM-CM5
30505 tracks
8689 survivors | | GCM-12
CSIRO-Mk3.6.0
12085 tracks
2382 survivors | | |---|--|---|--------------------------------------|--|---|---|---|---|--------------------------------|---|----------| | 209.27 storms/century | | 228.95 storms/century | | 145.90 storms/century | | 177.87 storms/century | | 265.92 storms/century | | 78.95 storms/century | | | GCM-03
BCC-CSM1.1
20439 tracks
2932 survivors | | GCM-04
BCC-CSM1.1(m)
13761 tracks
3523 survivors | | GCM-08
CMCC-CESM
17277 tracks
3772 survivors | | GCM-09
CMCC-CM
22778 tracks
7300 survivors | | GCM-13
EC-EARTH
32781 tracks
12359 survivors | | GCM-14
FGOALS-g2
29286 tracks
2730 survivors | | | 192.58 storms/century | | 136.37 storms/century | | 159.39 storms/century | | 229.27 storms/century | | 317.18 storms/century | | 283.64 storms/century | | | | GCM-05
BNU-ESM
27750 tracks
3820 survivors
259.34 storms/century | | RCF
scene
198.52 s
(per cer | ario
storms | GCM-10
CMCC-CMS
20675 tracks
6194 survivors
215.89 storms/century | | A | | GFDI
17779
4171 s | M-15
L-CM3
tracks
urvivors | | | GCM-16
GFDL-ESM2G
20348 tracks
4686 survivors
176.53 storms/century | | GCM-17
GFDL-ESM2M
16884 tracks
3996 survivors
142.82 storms/century | | GCM-21
IPSL-CM5A-MR
14172 tracks
2382 survivors
96.85 storms/century | | GCM-22 IPSL-CM5B-LR 23922 tracks 6328 survivors 222.78 storms/century | | GCM-26
MPI-ESM-LR
19684 tracks
6708 survivors
223.04 storms/century | | GCM-27
MPI-ESM-MR
21590 tracks
6969 survivors
245.47 storms/century | | | GCM-18 HadGEM2-CC 24510 tracks 7503 survivors | | GCM-19
INM-CM4
12250 tracks
2844 survivors
112.70 storms/century | | GCM-23
MIROC5
29654 tracks
9216 survivors
277.13 storms/century | | GCM-24
MIROC-ESM
27239 tracks
5499 survivors | | GCM-28
MRI-CGCM3
22758 tracks
5993 survivors
212.25 storms/century | | GCM-29
MRI-ESM1
23950 tracks
6432 survivors
218.11 storms/century | | | 33.32 3.01 | GCM-20
IPSL-CM5A-LR | | 15 mo
▼ ▼ | GCI
MIROC-E | | M-25
SM-CHEM
tracks 15 mo | | GC
NorE | | W-30
SM1-M
tracks
urvivors | Soritary | ## **CONCLUSIONS** - Our statistical-deterministic approach is a good alternative to computationally expensive classical methods (e.g. dynamical downscaling of medicanes), with the extra benefit of producing statistically large populations of events - Future change in the number of medicanes is unclear (on average the total frequency of storms does not vary) but a profound redistribution is found. Our method projects an increased occurrence of medicanes in the western Mediterranean and Black Sea, balanced by a reduction of storm tracks in contiguous areas, particularly in the central Mediterranean - The probability of medicanes may increase during the summer while it may decrease during the late fall and winter; the probability maximum will still occur around October - We found a remarkable modification of the spectrum of lifetime maximum winds: the results project a higher number of moderate and violent medicanes at the expense of weak storms - In particular, future extreme events (winds > 60 kt) become more likely in all Mediterranean regions, and the probability of violent medicanes (winds > 90 kt) for the basin as a whole more than doubles the current risk. As the destructive power of the storms is proportional to the wind speed cubed, these projected changes of storm intensity raise concern about the future vulnerability of Mediterranean coastal regions