Statistical Downscaling of EURO-CORDEX climate change scenarios: Projections of droughts and heavy precipitation along the 21st century

M. Cardell, A. Amengual, R. Romero, V. Homar and C. Ramis

(1) Grup de Meteorologia, Departament de Física, Universitat de les Illes Balears (UIB), Palma, Mallorca, Spain

E-mail: maria.cardell@uib.cat
Index

1. Motivation and objectives
2. Database and methodology
3. Results
4. Future work
1. Motivations and objectives

Climate change: current evidences

- Global mean surface air temperature has risen by about 0.74°C (1906-2005)
- 11 of the 12 warmest years on record have occurred in the past 12 years
- Important regional variations
- Redistribution of rainfall and other variables

Extreme weather events

Summary for Policymakers (IPCC)

- cold days and nights (99%)
- hot days and nights (99%)
- frequent and/or intense heavy rainfall events (90%) Longer and/or more intense droughts (66%)
- hurricane activity (50%) (western north pacific and north atlantic)
Tools for exploring climate change impacts

- **GCMs → RCMs**

 - **Regional scales:** Dynamical downscaling. Regional Climate Models (RCMs)
 - **Local scales:** Statistical downscaling and model calibration from RCMs
Statistical downscaling of RCM outputs

OBS 1981-2005

RCM calibrated 2025-2099

climate change signal

RCM 1981-2005 (control)

changes

RCM 2025-2099
Statistical downscaling of RCM outputs: Quantile-Quantile adjustment (Amengual et al. 2012)

\[p_i = o_i + g \bar{\Delta} + f \Delta_i' \]

\[\Delta_i = s_{fi} - s_{ci} \]

\[\bar{\Delta} = \frac{1}{N} \sum_{i=1}^{N} \Delta_i = \frac{1}{N} \sum_{i=1}^{N} (s_{fi} - s_{ci}) = \frac{S_f}{N} - \frac{S_c}{N} \]

\[\Delta_i' = \Delta_i - \bar{\Delta} \]

\[g = \frac{\left(\frac{1}{N} \sum_{i=1}^{N} o_i \right)}{\left(\frac{1}{N} \sum_{i=1}^{N} o'_i \right)} = \frac{\bar{O}}{\bar{S}_c} \]

\[f = \frac{\sigma_o}{\sigma_{S_c}} = \frac{\text{IQR}|_O}{\text{IQR}|_{S_c}} \]

\[f = \frac{\sigma_{o_i}}{\sigma_{S_{ci}}} \]
2. Database and methodology

E-OBS gridded dataset (25 km)
EURO-CORDEX (12.5 km)

Validation task

• Validation task

Perkins skill score (PSS) (Perkins et al. 2007)

PSS = 94.07%

PSS = 92.13%

PSS = 87.85%

OBS (1956-80)

Raw (1956-80)
• Validation task Perkins skill score (PSS) (Perkins et al. 2007)

PSS = 94.07%

PDF

minimum temperature (°C)

OBS (1956-80)
Local (1956-80)
• Validation task Perkins skill score (PSS) \((Perkins \ et\ al.\ 2007)\)

PSS under \(P_5\) for minimum temperature in winter

\[\begin{array}{l}
\text{Raw} \\
49.17\% \\
\text{Local} \\
67.07\% \\
\text{ENSEMBLE}
\end{array}\]
Climate change projections

Compute changes in calibrated CDFs between a 25-year past (i.e. control/observed; 1981-2005) and successive 25-year RCM time-slices (2021-2045; 2046-2070; 2071-2095) Future regional scenario rcp4.5 and rcp8.5

<table>
<thead>
<tr>
<th>Driving GCM</th>
<th>RCM</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNRM-CM5-LR</td>
<td>CCLM4-8-17</td>
<td>CLMcom</td>
</tr>
<tr>
<td>EC-EARTH</td>
<td>CCLM4-8-17</td>
<td>CLMcom</td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td>CCLM4-8-17</td>
<td>CLMcom</td>
</tr>
<tr>
<td>MPI-ESM-LR</td>
<td>CCLM4-8-17</td>
<td>CLMcom</td>
</tr>
<tr>
<td>EC-EARTH</td>
<td>RACMO22E</td>
<td>KNMI</td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td>RACMO22E</td>
<td>KNMI</td>
</tr>
<tr>
<td>EC-EARTH</td>
<td>HIRHAM5</td>
<td>DMI</td>
</tr>
<tr>
<td>NorESM1-M</td>
<td>HIRHAM5</td>
<td>DMI</td>
</tr>
<tr>
<td>CNRM-CM5</td>
<td>ALADIN53</td>
<td>CNRM</td>
</tr>
<tr>
<td>CNRM-CM5</td>
<td>RCA4</td>
<td>SMHI</td>
</tr>
<tr>
<td>EC-EARTH</td>
<td>RCA4</td>
<td>SMHI</td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td>RCA4</td>
<td>SMHI</td>
</tr>
<tr>
<td>MPI-ESM-LR</td>
<td>RCA4</td>
<td>SMHI</td>
</tr>
<tr>
<td>IPSL-CM5A-MR</td>
<td>RCA4</td>
<td>SMHI</td>
</tr>
</tbody>
</table>
3. Results

Mean annual precipitation

Observed

Future change (multi-model mean)

Std (future change multi-model)
Annual precipitation days

OBSERVED

FUTURE CHANGE
(multi-model mean)
Mean seasonal precipitation

OBSERVED

WINTER

SPRING

SUMMER

AUTUMN

Precipitation (mm)

- [0,50]
- (50,100]
- (100,150]
- (150,200]
- (200,250]
- (250,300]
- (300,400]
- (400,600]
- (600,900]
Future change (Multi-model mean)
P99 of daily observed precipitation

WINTER

SPRING

SUMMER

AUTUMN

Precipitation (mm)

[0,5] [5,10] [10,15] [15,20] [20,30] [30,40] [40,50] [50,60]
Events over P99 of daily precipitation

FUTURE CHANGE
Mean daily minimum temperature (WINTER)

Observed

Future change (multi-model mean)

Std (future change multi-model)
P1 of daily minimum temperature (WINTER)

OBSERVED

EVENTS UNDER P1:
Future change
(multi-model mean)
Mean daily maximum temperature (SUMMER)

Future change (multi-model mean) Std (future change multi-model)
P99 of daily maximum temperature (SUMMER)

OBSERVED

EVENTS OVER P99: Future change (multi-model mean)
P99_obs = 34.82 °C
P99_fut = 37.08 °C
4. Future work

• Carry out an analysis of the temporal organization of the extreme events, in order to study the future incidence of droughts, heavy precipitation episodes, heat waves and cold spells.
Aknowledgments:

CGL201452199-R (AEI/FEDER, UE)

FPI-CAIB (Conselleria d’Innovació, Recerca i Turisme del Govern de les Illes Balears and the Fons Social Europeu)