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This study develops a weather typing stochasticmethod for the climatic prediction of rainfall in Peninsular Spain
and the Balearic Islands during the 21st century. Cluster analysis is applied to the geopotential height fields with
the purpose of classifying the atmospheric states into distinct daily circulation patterns. The same kind of analysis
is performed on the rainfall distributions, obtaining the corresponding daily rainfall patterns. It is possible to
establish a suitable association between each of the circulation types and the rainfall patterns. This circulation–
rainfall link becomes the essence of our downscaling method, which will allow the “reconstruction” of the
accumulated rainfall field from a generated sequence of daily rainfall patterns. This is done with the support
of a statistical weather generator using the daily patterns of atmospheric circulation provided by different
GCMs as input. The weather typing approach and the weather generator strategy interrelate in a novel and
unique way different from any previous method. The downscaling method is first subjected to calibration,
using reanalysis circulation as input, fromwhich the optimal number of atmospheric and rainfall patterns to
perform the projection is found. Later on the method is subjected to validation, using GCMs' daily atmospheric
circulation as input, in order to test its robustness. The final part of the study focuses on the analysis and
intercomparison of future precipitation projections for the 21st century under the A1B emission scenario from
five different GCMs. A substantial drying of about 30% is foreseen at the end of the century in Spain compared
to present, although with a nonuniform pattern in space and time as the century progresses.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Global warming is the measured average temperature increase of
the Earth's lower troposphere in the 20th century attributed to human
activities (Solomon et al., 2007). The increasing interest in global
warming has been motivated by its impact on the Earth's ecosystem
and its available resources and, more importantly, on the human
societies. Although the global warming effect has been widely studied
(e.g. Harin et al., 2007; Durack and Wijffels, 2010; DelSole et al., 2011)
it can lead to a more generalized climatic change with a profound
impact on the atmosphere dynamics and precipitation patterns (Held,
1993; Romps, 2011; Chou et al., 2012). The Iberian Peninsula and
Balearic Islands, depicted in Fig. 1a, is a region of particular interest in
studies of climate change. This zone is subjected to extreme seasonal
contrasts and as a result of anthropogenic emissions of greenhouse
gases (GHG) and its geographical location, large changes on tempera-
ture and precipitation are expected throughout the century (Solomon
et al., 2007). Global Climate Models (GCMs) have been used to study
the changes in precipitation globally and at a continental scale (Dai,
2006; Solomon et al., 2007). However, the complex topography of the
Mediterranean region and the relatively low resolution and reliability

of the projections provided by GCMs have raised in the case of precipita-
tion the need of developing a new set of downscaling methods that can
provide useful predictions with higher resolution (Giorgi and Mearns,
1991). That set ofmethods ismainly distributed in two classes: dynamical
and statisticalmethods. Dynamicalmethods rely on the knowledge of the
atmospheric physics to perform simulations of the atmospheric circula-
tion nested in the GCMs. On the other hand, statistical methods rely on
statistical correlations that can be deduced between reanalysis data and
the databases of the observed variables at higher resolution. This second
kind of methods are less demanding in terms of computer resources
and provide alternative future projections that can be compared with
the projections generated by the more expensive dynamical methods.

The method developed in this study can be integrated into the
second class, i.e. statistical methods. Our main goal is to generate daily
precipitation time series that are consistent with the climate model
tendencies they are derived from. The series are generated at daily
scalewith the triple objective of: (i) producing data that has the potential
to be aggregated and analyzed in differentways as a base for futurework,
(ii) easing the comparison with the results provided by dynamical
methods and (iii) providing adequate input to further impact models
that depend on the amount of precipitation down to the daily scale. As
explained in the next section, this goal leads to the use of a stochastic
weather generator. Willems and Vrac (2011) suggest a classification of
statistical methods into transfer function approaches, stochastic weather
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generators and weather typing approaches. The present method uses
weather typing and a weather generator and therefore it can be formally
classified as a hybrid type of these two classes. However, both approaches
interrelate in a novel way that has its own strengths andweaknesses as it
will be discussed.

Ribalaygua and Borén (1995) and Romero et al. (1999a) used cluster-
ing methods to analyze the distribution of precipitation over Spain and
the Mediterranean, respectively. There are also studies using statistical
information linking synoptic atmospheric circulation patterns and
different surface weather parameters (e.g. Gutiérrez et al., 2004;

Fig. 1. a) Main orographic features of Peninsular Spain and Balearic Islands. The domain shown corresponds to the geographical area used for the atmospheric circulation classification.
b) 2.5° resolution GCM data grid.
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Benestad et al., 2008) and precipitation in particular (e.g. Sumner
et al., 2003). Gutiérrez et al. (2004) offer information about multiple
statistical methods including methods in which the applied similarity
criterion is the distance between the spatial patterns of the physical
variable under consideration, as in Zorita and von Storch (1999). On
the other hand, Duda et al. (2001) present many methods to perform
this classification. Gutiérrez et al. (2004) also provide information on
stochastic methods such as Markov's chains and stochastic weather

generators, widely used in different precipitation prediction studies
like those of Jeong et al. (2011), Chen et al. (2010), Fu et al. (in press)
or Sørup et al. (2012).

The present method is heavily influenced and, in fact, can be
considered an evolution of the method described in Sumner et al.
(2003). That work carried out a classification of different circulation
types or atmospheric patterns (APs) and the resulting daily precipita-
tion distributions or rainfall patterns (RPs) that affect the Spanish
Mediterranean area. By consideration of a training data base the study
was able to compute the frequency of each RP within a given AP, i.e.
to find the conditional probability matrix. Later on, this information
was used to make projections of the future precipitation on the basis
of the APs' occurrence in a GCM transient simulation. A novel feature
was the capability of the method to correct the inherent biases of the
used GCM by means of the comparison of AP frequencies with those
found in reanalysis data for a same control period. However, Sumner
et al. (2003)method does not account for the possible effects associated
with changes in predictor variable's magnitude and only produces
mean precipitation maps for a future time slice instead of the more
desirable daily distributions. These limitations are overcome in the
present approach,with the additional advantage of itswider application
to several GCMs and consideration of updated emission scenarios
(SRES, Nakicenovic et al., 2000). The method will be applied to explore

Table 1
GCMs used for the precipitation projections.

GCM Abbreviation

Bjerknes Institute for Climate Research BCM 2.0 BCM2
Centre National de Recherches Météorologiques CNRM-CM3 CNCM3
Centre National de Recherches Météorologiques CNRM-CM33 CNCM33
Max Planck Institute (Hamburg) ECHAM5 MPEH5
Max Planck Institute (Hamburg) ECHAM5C MPEH5C
Institute for Meteorology ECHO-G Middle atmosphere model EGMAM
Institute for Meteorology ECHO-G Middle atmosphere model v2 EGMAM2
Hadley Center HADGEM HADGEM
Hadley Center HADGEM2 HADGEM2
Hadley Center HADCM3C HADCM3C
Institute Pierre Laplace IPCM4 IPCM4

Fig. 2. Percentage of explained variance as function of the number of axes or principal components considered in the PCA of 500 hPa and 850 hPa geopotentials. Both variables are pre-
viously standardized in order to be analyzed simultaneously. The overall explained variance raises quickly and more than 95% can be explained with only eleven principal components.

Fig. 3. Probability of occurrence of RP 9 for each atmospheric pattern. Rain pattern from Fig. 4 is depicted as annual accumulated precipitation inmm. Note the stationarity hypothesis as no
temporal tendency arises along the sequence of 5-year data.
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the effects of climate change on precipitation over Peninsular Spain and
the Balearic Islands during the 21st century.

To this end, the intricacies of the method and the data sets used to
feed it are first presented (Section 2). The technique depends on two
free parameters that must be determined through a calibration process.
Section 3 describes the calibration procedure which serves also to learn
the basic characteristics and limitations of the downscaling method.
This calibration uses reanalysis data while in Section 4 we carry out
the validation of the downscaling method using GCM data for a
reference period. Finally, Section 5 presents and discusses the future
precipitation projections.

2. Data base and methodology

2.1. Atmospheric and precipitation data

The atmospheric circulation data available to implement the training
phase of the method are the ERA40 grid reanalyses developed by the
European Centre for Medium-Range Weather Forecasts (ECMWF)
(Uppala et al., 2005). This gridded data contains geopotential, tem-
perature, relative humidity and horizontal wind components with
a spatial resolution of 2.5° in both latitude and longitude. A thirty
year period from 1st January 1961 to 31th December 1990 was

Fig. 4. Example of 9 RPs and 18APs classification obtained bymeans of a k-means cluster analysis. RP composites are presented as annual accumulated precipitation inmm. AP composites
are presented only for the geopotential at 850 hPa, in m2/s2.
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chosen, with the fields available at 00 UTC on a daily basis. As the
first step of the procedure, the synoptic-scale circulation over the
geographical window shown in Fig. 1bwas classified in atmospheric pat-
terns. This domain (35 grid points) is large enough to fully encompass
Peninsular Spain and the Balearic Islands but sufficiently small to avoid
contamination of the regional AP classification fromremote areas. Further
tests of the method with a domain slightly larger or shifted to the NE
and SW has proven few differences, thus the domain selection is robust.
The classification was carried out using two variables: 500 hPa and
850 hPa geopotential fields. This selection is motivated by the work
of Sumner et al. (2003), who concluded the feasibility with these

two fields of capturing the mid and low tropospheric mechanisms
responsible for the precipitation generation or suppression.

Additionally, eleven global circulation models were available for the
validation phase of the study as well as for the production of the future
precipitation projections. The same variables and domain described
above were extracted from these GCMs, which belong to six model
families and are listed in Table 1.

On the other hand, the precipitation data used to carry out the train-
ing of the algorithm come from the so-called Spain02 grid. Spain02 is a
regular 0.2° (approx. 20 km) horizontal resolution daily precipitation
grid covering Peninsular Spain and the Balearic Islands and spanning

Table 2
Example of a conditional probability table, corresponding to the classification shown in Fig. 4. Note that RP0 corresponds to a zero rain class at every point of the grid.

RP1 RP2 RP3 RP4 RP5 RP6 RP7 RP8 RP9 RP0

AP1 0.6035 0.0623 0.0050 0.1322 0.0424 0.0424 0.0050 0.0474 0.0050 0.0549
AP2 0.6000 0.0185 0.0831 0.0338 0.0431 0.0462 0.0431 0.0615 0.0369 0.0338
AP3 0.5821 0.1227 0.0050 0.0746 0.0846 0.0630 0.0050 0.0348 0.0083 0.0199
AP4 0.5471 0.0118 0.0059 0.0853 0.1176 0.0176 0.0176 0.1353 0.0529 0.0088
AP5 0.4671 0.0035 0.0069 0.2215 0.0519 0.0311 0.0035 0.1834 0.0138 0.0173
AP6 0.4613 0.0179 0.0149 0.3482 0.0655 0.0357 0.0000 0.0149 0.0060 0.0357
AP7 0.4586 0.0303 0.0222 0.0343 0.1919 0.0687 0.0263 0.1131 0.0444 0.0101
AP8 0.3912 0.1640 0.0189 0.2019 0.0158 0.1577 0.0079 0.0174 0.0000 0.0252
AP9 0.3732 0.0739 0.1725 0.0704 0.0352 0.0704 0.1092 0.0387 0.0493 0.0070
AP10 0.3653 0.0133 0.0213 0.1387 0.1360 0.0187 0.0267 0.2080 0.0720 0.0000
AP11 0.1977 0.0610 0.0116 0.1105 0.3459 0.1308 0.0727 0.0436 0.0262 0.0000
AP12 0.2120 0.2999 0.0564 0.0688 0.0248 0.2413 0.0643 0.0192 0.0090 0.0045
AP13 0.1649 0.0632 0.0175 0.2982 0.1298 0.2526 0.0351 0.0386 0.0000 0.0000
AP14 0.2555 0.0501 0.2516 0.0064 0.0565 0.0603 0.1682 0.0347 0.1078 0.0090
AP15 0.2458 0.0428 0.1045 0.0226 0.0938 0.0546 0.0914 0.1651 0.1734 0.0059
AP16 0.1306 0.0733 0.1403 0.0185 0.1571 0.0997 0.2136 0.0609 0.1041 0.0018
AP17 0.1828 0.0442 0.1968 0.0029 0.1024 0.0612 0.1570 0.0766 0.1724 0.0037
AP18 0.1907 0.1915 0.0865 0.0441 0.1178 0.1915 0.1154 0.0313 0.0256 0.0056

Fig. 5. a) Absolute frequencies of the different rainfall patterns in the period 90–94 for real and predicted precipitation. Note the good agreement between both distributions. Kolmogorov–
Smirnov test p-values for the comparison between real and synthetic distributions attain 73.58%. b) The same but for the period 95–99 butwith Kolmogorov–Smirnov test p-values for the
comparison of 98.58%. In both figures the null hypothesis is that both distributions are equal. The test would reject the null hypothesis if performs under 5% of significance level.
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the period from 1950 to 2008. This grid was built by the Universidad de
Cantabria Meteorology Group (Herrera et al., 2010) using a Kriging in-
terpolation method from a network of about 2500 irregularly-
distributed quality-controlled stations from the SpanishMeteorological
Agency (AEMET).

2.2. Classification and probability matrix

To relate the atmospheric circulation with daily precipitation, first
the data sets are grouped in atmospheric patterns (APs) and rainfall
patterns (RPs), respectively. Classification is a commonway of analyzing
structured data (Fovell and Fovell, 1993); the clustering algorithm
used is the non-hierarchical k-means method (Anderberg, 1973), as
implemented in the MeteoLab library (Cofiño et al., 2010). This clas-
sification method has been previously used by the authors for pre-
cipitation in Romero et al. (1999a) and for atmospheric circulation

in Romero et al. (1999b). K-means method relies on the representation
of the variable under analysis on an n-dimensional space where each
axis is a station (i.e. a grid point) and each day is a point within the
space. Days are intercompared by means of the Euclidean distance
and the method seeks the grouping of days that tends to minimize
intracluster distance andmaximize intercluster distance. The particular
number of categories in which the data is grouped is an important pa-
rameter of the classification process, therefore the number of APs and
RPs must be set. The determination of the optimal number for these
parameters is called the calibration of the method. Note that what is
tested in the calibration phase is not the particular classification process
but the overall method performance under a particular selection of AP
and RPnumbers. A good AP–RP number combinationwould be attained
if the particular configuration of the method has good predictive
properties regarding the obtained precipitation projections, thus
we test whether the method works or not as a whole. The calibration
process will be presented and discussed deeply in next section.

Owing to the different isobaric levels involved in the classification
of atmospheric circulations, standardization is applied on the input
variables in order to prevent dominance in the analysis of the 500 hPa
geopotential, of larger magnitude and variability than at 850 hPa. Stan-
dardization is made on each day by subtracting the geographical mean
of the day from the field and dividing the resulting spatial anomalies by
the geographical standard deviation. The result is a spatial pattern at
both levels without any information about the intensity of the lows,
highs, troughs and ridges embedded in the circulation. The same type
of standardization is applied for daily precipitation in coherence with
the idea of classifying in base of the rainfall localization only. The mag-
nitude of both atmospheric and rainfall perturbations is important for
the final result, but this magnitude is used in a different step of the
method.

It should be noted that since k-means algorithm is unable to handle
dayswithout precipitation, these are left out of the classification process
and are incorporated afterwards as an additional category or cluster
with its centroid obviously located at the zero point. Also, Principal
Component Analysis (PCA) is carried out for atmospheric data on the
one hand and for precipitation data (Benestad, 1999) on the other
hand prior to applying the k-means classification method in order to
identify directions that maximize variance. Requiring 95% of explained
variance from PCA allows the reduction of the dimensionality from 70
to only 11 axes (Fig. 2) for atmospheric circulation data, and from
1145 to 789 axes for daily precipitation, allowing the classification to
run in both cases with a reasonable computational effort.

Once atmospheric circulation and precipitation-structures are
classified, these are related through a conditional probability matrix
(M):

M ¼
p RP1jAP1ð Þ p RP2jAP1ð Þ … p RPNjAP1ð Þ
p RP1jAP2ð Þ p RP2jAP2ð Þ … p RPNjAP2ð Þ

⋮ ⋮ ⋱ ⋮
p RP1jAPMð Þ p RP2jAPMð Þ … p RPNjAPMð Þ

0
BB@

1
CCA: ð1Þ

Each M matrix cell represents the probability to find a RP given a
known AP and is built from the day by day relationship between APs
and RPs in the training data period. A real example is depicted in Fig. 4
and Table 2, corresponding to the 1961–1990 period with 9 RPs and
18 APs. Observe how high geopotentials over the domain correspond
to a situation of scattered or almost no rain whereas lows are associated
to intense and localized rainfalls in neighbor zones but, on the other
hand, every AP has a significant chance of not leading to any rain. An
unstable atmospheric situation can lead to intense and localized precip-
itation but it is not assured. At the same time lows are associated with a
lower chance of a dry day than highs. These results are physically
consistent and arise naturally from the classification and matrix building
mechanism.

Fig. 6.Weather generatorworking schematic. In a day t=i anAPj is found, thus the probabil-
ity distribution of RPs conditional to this AP can be found in the probability matrix M. One of
the RPs is selected in a random way but in agreement with the observed distribution.

Fig. 7. AP frequency bias-correction schematic. a) Compensation coefficients are calculat-
ed from the training period as the comparison between ERA40 and GCM AP absolute fre-
quencies. b) Coefficients are used in the prediction phase to obtain the unbiased GCM AP
absolute frequencies. c) Days from AP excess classes are eliminated randomly and
substituted for APs from deficient classes.
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Therefore M contains all the information about the causality
relationship between atmospheric circulation types and precipitation
distributions. This relationship is expected not to change, at least in a
significant way, during the century. This is our interpretation of the
stationarity hypothesis. Statistical methods are based on the assump-
tion of a same behavior of the causal atmospheric mechanisms in the
future, and here we have interpreted this hypothesis as the constancy
of the conditional probability matrix in time. Observe in Fig. 3 for a
selected AP–RP relationship how this hypothesis seems to bemaintained
in the present time analyzed data.

With Eq. (1) and the future daily atmospheric circulations also
classified in terms of APs a prediction can be carried out. Naturally
it is necessary that future circulations are classified on the same AP
clusters found for the present climate. This classification is done by
analogy: each circulation is classified in the same cluster as its most
similar atmospheric state of the present time. Similarity here is defined
as the Euclidean distance in the n-dimensional space mentioned above.

Knowing the AP of each future day a RP category is assigned to this
day according to the discrete probability distribution contained in M
matrix rows. This is done with the generation of nonuniform random
numbers distributed according to the corresponding ProbabilityDensity

Function (PDF). As each AP is more related to certain RPs and AP fre-
quencies change with time, RP frequencies will also change in time.
This stochastic RP generation process is in effect a weather generator.
Fig. 5 illustrates the performance of this procedure when applied to
two test periods. The frequency of RPs in the synthetic data is compared
against the real occurrence and an agreement can be concluded
(Kolmogorov–Smirnov test p-values for the comparison between
real and synthetic distributions attain 73.58% and 98.58% in Fig. 5a and
b, respectively. The null hypothesis is that both distributions are equal.
The test would reject the null hypothesis for a significance level under
5%). A schematic representation of the method is displayed in Fig. 6.

An improvement of Sumner et al. (2003) method over other
weather typing methods was its ability to correct the biases of the
model in the frequency of atmospheric circulations. Future circulations
are obtained from a GCM and classified as described. But runs of these
models for the present time are also classified in order to check and
correct these biases. Comparison of the ERA40 reanalysis AP absolute
frequencies against GCM AP absolute frequencies gives information
about the over- or under-representations of each model in terms of
weather patterns that can be stored as coefficients:

Ci ¼
fAPiERA40
fAPiGCM

: ð2Þ

This information is used over the predicted AP absolute frequen-
cies to obtain a bias-corrected or compensated estimation of the future
frequencies. Proportional excesses or deficits in APs according to Eq. (2)
are corrected in a simple way by randomly eliminating days from the
daily AP series from the exceeded stocks and replacing them by APs
from the deficient stocks. This is done automatically by first selecting
randomly an amount of days equal to the exceeded quantity and label-
ing them for deletion. Later, each of these days is replaced by APs from
the deficient stock. The particular order in which these APs are inserted
in the deleted positions is selected randomly. An outline of the process
can be found in Fig. 7.

Finally, models are biased not only in AP frequencies but also in the
overall magnitude of the fields. (Although the magnitude of the fields
has not yet been used, it will be important in the next section). Therefore
a quantile–quantile adjustment is applied on the spatial average of the
predicted 850 hPa geopotential. That is, the most similar magnitude to
the future GCM field is searched within the present period GCM run
and its quantile level is mapped over the ERA40 statistics to find the un-
biased or compensatedmagnitude (Fig. 8). The application of such type of
quantile–quantile mapping transformations is a procedure that has been
widely used for correcting biases in the simulated meteorological
variables (e.g. Boé et al., 2007; Déqué, 2007; Amengual et al., 2012).

Fig. 8. Example of the quantile–quantilemagnitude adjustment. Amagnitude value from prediction period is searched in the GCM training data. Bymeans of a quantile–quantilemapping
from GCM to ERA40 an unbiased value is found.

Table 3
Available populations for a 30 year period of training (see text).

Number of
RPs

Number of
APs

Categories Days/category
(approx.)

Points/RP
(approx.)

4 8 32 342.2 361.3
5 10 50 219.0 289.0
6 12 72 152.1 240.8
7 14 98 111.7 206.4
8 16 128 85.5 180.6
9 18 162 67.6 160.6
10 20 200 54.8 144.5
11 22 242 45.2 131.4
12 24 288 38.0 120.4
13 26 338 32.4 111.2
14 28 392 27.9 103.2
15 30 450 24.3 96.3
16 32 512 21.4 90.3
17 34 578 18.9 85.0
18 36 648 16.9 80.3
19 38 722 15.2 76.1
20 40 800 13.7 72.3
21 42 882 12.4 68.8
22 44 968 11.3 65.7
23 46 1058 10.3 62.8
24 48 1152 9.5 60.2
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Fig. 9. a) Kolmogorov–Smirnov p-values, b) Relative error in the number of dayswith precipitation under 1 mmErrZ, c)Mean rainfall error and d) Spearman's rank correlation coefficient.
The training period used is 1961–1990 and the prediction period 1991–1999. Number of APs is chosen as twice the number of RPs. 9 RPs and 18 APs are selected as the best configuration.

Fig. 10.Mean rainfall error and Kolmogorov–Smirnov p values after applying the downscalingmethod to different GCMs. The training period used is 1961–1990 and the prediction period
1991–1999. The chosen configuration is the best one from the calibration phase: 9 RPs and 18 APs. Compensated and uncompensated results are compared (C and NC prefix respectively)
and also with the results obtained from an analog method (AN prefix). For comparison, the statistics in perfect prog (i.e. using ERA40) are included as dark bars.
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2.3. Rainfall map selection

To this point only the rainfall spatial distribution (i.e. RP) has been
determined for each future day, without regard to the magnitude of
the field. To generate a complete daily rainfall map a present day
pertaining to that RP is chosen. An advantage of this strategy is that by
identifying a future realization with a whole daily map the spatial
coherence of the generated rainfall field is ensured. However, the selec-
tion of the dailymap should not be completely randombecause changes
on future atmospheric temperature and thus in the overallmagnitude of
the geopotential field offer motivations to expect that rainfall magni-
tude probability will not remain constant in the future. The rainfall
map selected is that belonging to a present day pertaining to the same
RP and with the closest 850 hPa geopotential spatial average to the
future day. Note that the spatial pattern of the atmospheric circulation
is not relevant at this point because it has already been considered
when the AP category of the day has been determined in a previous
step. Therefore the magnitude of the 850 hPa background height field is
used to reduce the selection of a daily rainfall map to the most similar
day from the training period.

3. Calibration

The downscaling methodology is dependent on two subjective
choices, number of APs and RPs. A calibration of the algorithm must
be thus achieved before producing the rainfall projections. As a general
rule we consider a range of different RP sets, setting the AP number as
twice the RP number. This strategy is justified by the practical need of
using more AP categories than RP categories because no rain events
combine into a single RP class but the number of responsible synoptic
circulation patterns may be very diverse. A simple analysis over the
resulting statistical populations (Table 3) guides the selection of a
reasonable range of parameters suitable to perform the calibration. The
conditional probability matrix has a dimension given by the RP number
N times the AP number M. The relation between the total number of
days included in the training data set and the number of matrix cells
leads to a rough estimate of the statistical significance of these conditional
probabilities, which should be calculated using a sufficient population of
days. Higher ratios of AP number versus RP number have been tested
but show no better results while they have the potential to lead tomatrix
cells poorly represented in statistical terms. On the other hand the

Fig. 11. As in Fig. 10 but in terms of the spatial maps of mean rainfall error and Kolmogorov–Smirnov p-values (uncompensated results).
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relation between the number of Spain02 grid points and the number of
rain patterns is informative about how well represented the different
RPs are. Ifwe take 250 points as the typical size of themajor hydrographic
basins of Spain, RPs with dimensions larger than this value would be
clearly underrepresenting the spatial variability of rainfalls. A range be-
tween 6 and 20 RPs has been considered reasonable to perform the
calibration.

Themethod is trained using the period 1961–1990 and tested for the
period 1991–1999. Daily rainfall series are generated for this period and
a comparison between synthetic and real series is done. This calibration
is performed in perfect prog, that is, training and predictingwith ERA40
reanalysis data. Four statistics have been used: three measures of the
quality of the synthetic distribution (Kolmogorov–Smirnov p-values,
Spearman's rank correlation coefficient and relative error in dry days)
and mean rainfall error. The combination of these four types of mea-
sures provides a complete picture of the goodness of the predicted
data. Panels in Fig. 9 show the results for each combination of RPs and
APs as boxplots. These boxplots are constructed from the statistical indi-
ces obtained for the predicted series at each grid point of the map: the
central point at the boxplot is themedian of themap for the correspond-
ing statistic and the limits of the box are the 25 and 75 percentiles; the
whisker extremes are the 10 and 90 percentiles.

The Kolmogorov–Smirnov test (Fig. 9a) is performed over the
predicted rainfall distribution with the real rainfall as the reference
distribution. The analysis is carried out over the obtained p-values to
evaluate the confidence in the similarity between the distributions.
The rejection threshold is set at 5%. Only a small fraction of the grid
points of the map fall under this value. When the map is evaluated as
a whole the overall behavior of the method is satisfactory. A com-
plementary statistic to the Kolmogorov–Smirnov test is the relative
error in the number of days with precipitation less than 1 mm (here
abbreviated ErrZ; Fig. 9b). Kolmogorov–Smirnov test yields a score
regarding the whole daily series distribution without distinguishing if a
drop in confidence is due to the over or underrepresentation in the
series of intense, light or no precipitation days. Intense precipitation
events are rare and harder to predict owing to the lack of statistical
population of extreme events. Days with extreme precipitation are
influential on the mean annual rainfall map, but since they are rare, its
weight on the annual rainfall becomes less important than the weight
of days with light or no rain. In effect, a strong correspondence is
shown between ErrZ and the mean rainfall error (Fig. 9c) pointing out
that a correct prediction of the number of under 1 mm rain days is
most relevant to the mean map than an accurate statistic of intense
events. This high correspondence makes one of the two statistics enough

Fig. 11. (Continued) As in Fig. 10 but in terms of the spatial maps of mean rainfall error and Kolmogorov-Smirnov p-values (compensated results).
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for our purposes and the mean rainfall error (Mme) is more common in
literature (Gutiérrez et al., 2004; Wilks, 2006).

Correlation is measured with the Spearman's rank correlation
coefficient (Fig. 9d). The median of the boxplot is around 0.6, a moder-
ate value. That means that the method is capable of discriminating
betweenwet and dry seasons and also identifying correctly the fraction
of rainy to dry days, enabling a seasonal climate analysis.

The best overall result is found at 9 RPs and 18 APs and this will be
our selected configuration of the method for the rest of the study.
Nevertheless, there are no large differences between high and low
RP/AP combinations, probably because the resolved spatial scale of
the atmospheric circulation and rainfall distribution in the used databases
lacks mesoscale information.

4. Validation

Calibration has been developed in perfect progwith ERA40 reanalysis
data to obtain the proper RP/AP configuration. Before making any
future projection the workability of the method with GCM data must
be tested and validated. As for calibration, the method is trained with
the period 1961–1990 and tested in the period 1991–1999, this time
with each GCM as atmospheric circulation source. The same statistical
indices were calculated and can be found in Figs. 10 and 11 in boxplot
and map forms, respectively. Validation is performed in two modes:
compensated and uncompensated. Uncompensated skips any compen-
sation steps of the method (recall Section 2 and the compensation
procedure summarized in Fig. 7); the comparison between both

Fig. 12. Summary of the comparison between the A1B scenario and present climate mean rainfall. Plotted is the median of the change (upper panel) and of the relative change (lower
panel) between the mean maps corresponding to 5-year periods of the 21st century and present climate mean map. Each curve in gray is from a projection using a different circulation
model. In black the result for the ensemble mean is shown.

Fig. 13. As in Fig. 12, but showing a comparison for the relative change between the ensemble mean obtained with the statistical projection method and the ensemble mean obtained
directly from the Global Climate Models. Note we are comparing results from maps with a very different spatial resolution, thus the comparison is merely orientative.
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approaches is useful to point out the great importance of correcting the
biases of the models in AP frequency and field magnitude. Compensa-
tion is revealed as essential to produce an accurate rainfall prediction
as noted in the great improvement of the distribution of p values and
themean rainfall for all the sourcemodels. Even poorly behavedmodels
such as MPEH5, with almost all its points under the confidence level,
become useful for prediction if compensated, yielding similar results
to the rest of source models. In summary, the method seems to be
validated because the results obtained for the test period using the
GCMs as input data are generally similar to the perfect prog predictions.

Additionally, a comparison with the analog method (Zorita and von
Storch, 1999) is provided (Fig. 10). The analog method was previously
tested with different configurations and predictors under the same
training and prediction periods. A configuration of the analog method
with mean sea level pressure and temperature at 850 hPa as predictors
arose as the best choice. To make the comparison in fair conditions the
biases of theGCMvariableswere first corrected on amonthly basis prior
to feed the algorithm.Note the robustness of theproposedmethodology
in comparison with the analog method, offering similar results regard-
less of the GCM model used as source of the atmospheric circulation.
The analog method is more sensitive to the choice of predictors and to
the different models because it is more dependent on local features of
the meteorological fields.

5. Precipitation projections

In this section our validated method is applied to achieve the 21st
century precipitation projections for the period 2001–2099. Circulation
input data is taken from five different GCMs under the most studied

emission scenario: SRES-A1B. GCM selection is based on data availabil-
ity although more models were considered in the validation phase for
completeness and as a guide for future work. As for the calibration
and testing of themethod in the last sections, it is trained for the period
1961–1990 and we will use the best configuration found, i.e. 9 RPs and
18 APs.

Although the future projection for eachmodel is obtained in a single
run, the data are analyzed in 5-year periods. This kind of analysis allows
tracking of the changes all along the 21st century. Our specific interest is
to determine the changes in precipitation in comparison to the present
climate. Thus themean rainfall of each 5-year period is compared against
the present climate mean rainfall corresponding to the training period.
Two different but related measures are analyzed, absolute change
between rainfall maps and relative change with respect to the present
climate. The spatial medians of these two measures are displayed as
time series in Fig. 12 for the different GCM models and the ensemble
mean. It is remarkable that the rainfall decreasing trend obtained in the
statistical projections is consistent with the raw precipitation results
given by the Global ClimateModels (Fig. 13). Since themodels' precipita-
tion data are not used in the statistical prediction schemes, then this out-
come is only a consequence of changes in the large-scale circulation in the
global models.

Observe how precipitation decreases almost linearly in Peninsular
Spain and the Balearic Islands throughout the 21st century. The loss in
the map median reaches almost 30% in only one century (Fig. 12).
That would imply a very high climatic impact on precipitation with
great effects over ecosystems and society. The boxplot for the ensemble
mean (Fig. 14) shows that at some points this annual precipitation loss
reaches almost 40%. How much of this loss is due to changes in the

Fig. 14. Boxplot of the change and relative change betweenmean rainfall in future A1B scenario and present climate. Plotted is the geographical median of the change as a black horizontal
line, box limits are 25 and 75 percentiles and the extremes of the whiskers are the 10 and 90 percentiles.
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Fig. 15.As in Fig. 12 but from the application of themethodwith a randomselection of future day rainfall maps, without attending to changes inmagnitude of atmospheric circulation (see
text). A depiction of the relative changes as spatial maps for four selected 5-year periods is included in the lower panel.
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frequency of atmospheric circulation structures and how much to
changes in their magnitude? These two roles can be evaluated: once
the type of RP assigned to each future day is determined, if the final
daily map is selected randomly and ignoringmagnitude changes on cir-
culation (recall Section 2.3), no trend is observed in the geographical
median of the rainfall in Peninsular Spain and the Balearic Islands (see
Fig. 15). However, that doesn't imply that there are no regional changes;

as can be seen in the samefigure there is a redistribution of rainfall. Note
in particular the slight increase of precipitation in South Spain. From this
result it is learned that the change in magnitude of the patterns can
overcome the effects of the changes in frequency. In other words,
some patterns becomemore frequent thus more rain in certain regions
could be expected but since they are less intense a final drying can
occur; a clear example shown next is South Peninsular Spain. It is

Fig. 16. Maps of ensemble mean absolute change in annual rainfall between each 5-year period of the 21st century and present climate (1961–1990).

Fig. 17. As in Fig. 16 but for the relative change.
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Fig. 19. Comparison between A1B and B1 emission scenarios. The relative changes with respect to the present climate for each model projection in B1 emission scenario are depicted in
gray and give an idea of the spread of the results. The black line indicates the B1 ensemble mean of the three available models. The A1B emission scenario ensemble mean from the same
three models is represented as dotted black line.

Fig. 18. Comparison between the ensemble-mean relative change in annual precipitation with respect to the present climate in the analog method and the proposedmethod. A represen-
tative set of 5-year periods from the 21st century is selected.
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necessary to take into account both effects for an accurate prediction
even if they have opposite roles in a certain region. Also note that circula-
tion intensity changes may be different between atmospheric patterns.

Time series and boxplots are very useful to deal with trends but
spatial maps are necessary to study geographical distributions.
Figs. 16 and 17 show spatial maps of bothmeasures (absolute change

Fig. 20. Maps of ensemble mean absolute change in seasonal precipitation with respect to the present climate for the 21st century in the A1B scenario.

Fig. 21. As in Fig. 20 but for the relative change in seasonal precipitation.
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and relative changewith respect to the present climate) for each 5-year
period (note that the first period comprises 4 years instead of five). As
shown, Peninsular Spain becomes drier as the century progresses,
being the first affected regions the South and West of the Iberian
Peninsula. A few Mediterranean regions would remain relatively
unaffected until the last decades of the century. At the end of the
period almost all Peninsular Spain and the Balearic Islands would
have its precipitation reduced around 30%. Ebro and Duero basins
lie under the mean with a rainfall drop of around 20% and Segura
basin around 10%. A novel result of our method is the prediction
of an early climatic change impact in all western Peninsular Spain
including northern regions such as Galicia. This result is supported
by recent observations (Hoerling et al., 2012) and has been previously
unseen by other methods such as the analog method used as reference
in this work. In the comparison displayed in Fig. 18 it is shown that the
analog method projects a rainfall reduction from South to North con-
tinuous in time. The aforementioned redistribution of rainfall in the
present methodology results in western regions and even northern
ones to be affected from the very beginning of the century.

A comparison of the previous results with the B1 emission scenario
is shown in Fig. 19. A less emissive scenario would result in a relative
stabilization of the precipitation amount during the first 40 years of
the century. However the negative trends during the rest of the century
are similar, resulting in a net effect of about 10%more precipitation in B1
scenario than in A1B scenario at the end of the period. The change from
a stationary situation to a decreasing trend happens very quickly in B1
scenario without practically no transition phase between them.

Figs. 20 and 21 display the expected changes in seasonal precipitation
for A1B scenario. Observe that the two most widely affected seasons by
climate change in absolute terms arewinter and autumn, but the changes
in autumn are more noticeable in the early 21st century. Being summer
the less rainy season, the projected loss of precipitation in this period of
the year is comparable to winter and autumn in relative terms. The
greatest decrease in precipitation amount at the end of the century is
obtained in the northern Peninsular Spain but the largest relative change
compared to the present climate occurs inMediterranean regions and the
center of the peninsula. In relative terms, drier regions becomeevenmore
dry thanwet zones. Spring seems to be the less affected season but at the
end of the century a reduction of about 20% of precipitation is experi-
enced in a more or less uniform way across Peninsular Spain.

6. Conclusions and further work

A novel use of two well known strategies, weather typing and
weather generation, was made in this work to produce a new
downscalingmethod. Thismethodhas been calibrated to provide future
rainfall projections over Peninsular Spain and the Balearic Islands and
its performance has been validated over a present period using 11 dif-
ferent GCMs as source of the atmospheric circulation information. The
downscaling method exhibits a wider application in comparison with
the analog method. This characteristic is attributable to two reasons:
first, to the fact that the method only needs 18 AP classes to properly
represent the different atmospheric patterns over the domain of inter-
est, thus themethod relies on the identification of the general structure
of the atmospheric flow and not on its details; and second, to the use of
compensated daily circulation series in the statistical weather genera-
tion that permits to minimize the negative effects of the biases inherent
to the input atmospheric data. Compensation is not a new idea but this
work has deepened in the concept in comparison with previous works
in order to translate its benefits directly to daily time series of atmo-
spheric circulation.

The specific application of themethod over Peninsular Spain and the
Balearic Islands points out great effects in this region throughout the
21st century. Around 30% decreases in annual rainfall are expected on
average for the A1B emission scenario. Projected precipitation loss is
not uniform in time and across Peninsular Spain. The present method

shows that the changes will be noticeable first on west Peninsular
Spain at the beginning of the century and by the end of the century
the entire Iberian Peninsula will be largely affected. This projection is
different from the analog downscaling method that just shows a South
to North Peninsular Spain loss of precipitation in time. The greatest
decreases in precipitation amount in absolute terms is found in the
North of Spain, but relative changes will be more uniform. The present
work also projects that around 10% of this precipitation loss can be
saved in a less emissive scenario like B1. Seasonally, the drying process
will affect all periods of the year although precipitation decreases in
autumn will be already noticeable during the early 21st century.

Finally, we have not yet reached the full applicability of the method
in this paper. The present GCM selection is based on data availability but
a larger collection of models and emission scenarios will be considered
for future work. Also, other variables of great practical interest in addi-
tion to precipitation are suitable to receive the same type of statistical
treatment for the generation of future projections, in particular the
daily maximum and minimum temperatures. These climatic datasets
will form the basis of future interdisciplinary studies aimed at assessing
the impacts of global warming on strategic natural and socioeconomic
sectors of Spain.
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