
Mechanisms for Extreme Precipitation Changes in a Tropical Archipelago

DANIEL ARGÜESO,a A. DI LUCA,b N. C. JOURDAIN,c R. ROMERO,a AND V. HOMARa

a Physics Department, Universitat de les Illes Balears, Palma, Spain
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ABSTRACT: The Maritime Continent is one of the most challenging regions for atmospheric models. Processes that
modulate deep convection are poorly represented in models, which affects their ability to simulate precipitation features
accurately. Thus, future projections of precipitation over the region are prone to large uncertainties. One of the key
players in modeling tropical precipitation is the convective representation, and hence convection-permitting experi-
ments have contributed to improve aspects of precipitation in models. This improvement creates opportunities to
explore the physical processes that govern rainfall in the Maritime Continent, as well as their role in a warming climate.
Here, we examine the response to climate change of models with explicit and parameterized convection and how that re-
flects in precipitation changes. We focus on the intensification of spatial contrasts as precursors of changes in mean and
extreme precipitation in the tropical archipelago. Our results show that the broad picture is similar in both model setups,
where islands will undergo an increase in mean and extreme precipitation in a warmer climate and the ocean will see
less rain. However, the magnitude and spatial structure of such changes, as well as the projection of rainfall percentiles,
are different across model experiments. We suggest that while the primary effect of climate change is thermodynamical
and it is similarly reproduced by both model configurations, dynamical effects are represented quite differently in ex-
plicit and parameterized convection experiments. In this study, we link such differences to horizontal and vertical spatial
contrasts and how convective representations translate them into precipitation changes.

KEYWORDS: Maritime Continent; Precipitation; Climate change; Convective parameterization; Extreme events;
Mesoscale processes; Climate models; Mesoscale models; Convective-scale processes; Deep convection

1. Introduction

The Maritime Continent (Fig. 1) is the largest archipelago
on Earth and one of the most active centers of deep moist con-
vection on the planet. This tropical archipelago comprises
thousands of islands of varied sizes and steep topography sur-
rounded by the Indo-Pacific warm pool, a region with very
high sea surface temperatures. Intense convective processes in
the Maritime Continent (MC) shape its precipitation regimes
and thus have direct implications locally. However, the scale
and magnitude of the convection are such that it helps trans-
port large amounts of energy and moisture, modulating global
circulation patterns (Neale and Slingo 2003; Yamanaka et al.
2018). Their intrinsic relationship with phenomena such as the
Madden–Julian oscillation (MJO) (Birch et al. 2016) and the
Walker circulation/ENSO (Qian et al. 2010) are key examples
of the interaction across scales that occurs in the Maritime
Continent.

The region has proven very challenging in terms of under-
standing and modeling precipitation characteristics and the
associated physical processes. Despite the importance of the
region at multiple scales, global climate models fail to capture
key features of the Maritime Continent such as the MJO prop-
agation (Peatman et al. 2014; Ling et al. 2019) and the diurnal
cycle of rainfall (Baranowski et al. 2019), largely due to their
coarse resolution. In fact, even the most recent generation of
GCMs (CMIP6) still show substantial biases in tropical precipi-
tation (Fiedler et al. 2020). As a result, even though the CMIP
multimodel means suggest increases in rainfall over the region
[for CMIP5, see Fig. S1 in our online supplemental material
and also Jourdain et al. (2013); for CMIP6, see Wang et al.
(2020)], individual GCMs strongly disagree in the sign of rain-
fall changes (Jourdain et al. 2013; Narsey et al. 2020).

Regional climate models (RCMs), which operate at higher
spatial resolution, have contributed to improve our under-
standing and simulation of the mechanisms underlying rainfall
in the Maritime Continent (Vincent and Lane 2018; Ruppert
and Zhang 2019; Li et al. 2020) through better representation
of fine-scale processes (i.e., sea breeze, gravity waves, interac-
tion across scales, air–ocean fine-scale interactions). However,
RCMs are still prone to substantial errors, partly originating
from the interaction between the convective representation
and the land–sea contrasts (Birch et al. 2015; Vincent and
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Lane 2017; Im and Elthair 2018). Models that explicitly repre-
sent convection bring improvements in the simulation of the
precipitation diurnal cycle but produce unrealistic precipita-
tion over steep topography (Argüeso et al. 2016, 2020), mis-
represent the amplitude of the diurnal cycle (Hassim et al.
2016; Argüeso et al. 2020), or introduce errors in the rainfall
modulation by the MJO phase (Vincent and Lane 2017; Wei
et al. 2020). The challenges posed to models by convective
processes in the MC have attracted much attention in the
recent years because of their central role in the climate at
multiple scales. A perfect example of this interest is the in-
ternational initiative “Years of the Maritime Continent”
(YMC Phase 1 2017–20; Yoneyama and Zhang 2020),
aimed at coordinating international modeling and observa-
tional efforts to advance our understanding of the MC
weather and climate systems, and to improve the represen-
tation of convective processes and precipitation in models.

Precipitation in the Maritime Continent tends to concen-
trate over the islands (Qian 2008), where rainfall is character-
ized by a strong diurnal cycle that most models struggle
to capture. As described by Ruppert and Chen (2020), the
“island rainfall enhancement” effect and the land precipita-
tion diurnal cycle are ultimately linked to differences between
land and ocean in surface heat capacity and surface energy
fluxes. They also show that the diurnal cycle of solar radiation
governs mesoscale circulations (i.e., land–sea and mountain–
valley breezes), which in turn fuel the convective development,
help organize deep convection into mesoscale convective sys-
tems, and recharge the convective instability required for in-
tense rainfall rates. Local steep topography further contributes
to organize convection by exciting and coupling with gravity
waves and, in certain situations, to reinforce it by inducing oro-
graphic lifting. These convective systems then propagate off-
shore, assisted by gravity waves, reversed breezes (land
breeze), and cold pools (Ruppert and Zhang 2019; Yang et al.
2020), which together produce a diurnal cycle over water
that peaks between night and early morning, although it is
generally weaker the cycle than over land. Therefore, rainfall
features in the MC strongly depend on local factors such as

land–ocean contrasts, mesoscale circulations, moisture con-
vergence, intense convective instability, and topography.

In the context of climate change, we expect horizontal and
vertical warming contrasts that may induce changes in the in-
tensity and spatial distribution of precipitation. For example,
differences in warming rates between continents and ocean
can alter mesoscale circulations (Joshi et al. 2007) and vertical
warming contrasts can modify atmospheric stability (Wang
et al. 2020), which will likely affect rainfall in the Maritime
Continent. At the ocean basin scale, thermal contrasts will
also play a key role in defining future changes of the Walker
circulation (Yim et al. 2017), and hence in El Niño–Southern
Oscillation, determining which ascending branch is anchored
to the Maritime Continent, and likely modulated by the island
rainfall enhancement effect (Ruppert and Chen 2020). At
continental and seasonal scales, monsoons will be also intensi-
fied due to enhanced thermal contrasts (Seth et al. 2019),
which may redistribute precipitation.

In the Maritime Continent, Lambert et al. (2017) did not
find a consistent shift of rainfall from ocean to land due to
warming, as opposed to other tropical regions (i.e., Amazonia).
Bony et al. (2013) also identified land–sea thermal contrasts as
having an important role in modifying tropical rainfall patterns
over land, although they deemed the dominant factor in tropi-
cal overturning circulation to be the higher CO2 concentrations
and the resulting radiative imbalance in the atmosphere. How-
ever, all these changes were established using global climate
models (GCMs), which have serious difficulties in representing
crucial features of the Maritime Continent rainfall (Jourdain
et al. 2013; Schiemann et al. 2013; Baranowski et al. 2019; Yang
et al. 2020). Recent studies have generated future climate projec-
tions using RCMs (Supari et al. 2020; Tangang et al. 2020) and
found that both increases and decreases in land precipitation
over areas of the MC were plausible, depending on the region
and the season examined. Yet, the physical mechanisms driv-
ing such changes have not been explored.

Therefore, the use of higher-resolution models to better un-
derstand the mechanisms driving future changes in precipitation
over the region is still necessary. Despite some errors that persist

FIG. 1. The Maritime Continent archipelago. The region shown corresponds to the model do-
main and the black squares are sampling areas.
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in high-resolution models, experiments that explicitly resolve
convection are especially beneficial in coastal areas, regions of
complex topography, and locations with frequent and intense
deep convection (Prein et al. 2015; Lucas-Picher et al. 2021), all
of which apply to the Maritime Continent. In this study, we use
a model at convection-permitting scales to investigate the re-
sponse of rainfall to a warming climate. For the first time, we ex-
amine future climate information at convection-permitting
scales in the entire Maritime Continent and determine the dif-
ferent response of rainfall extremes to climate change in param-
eterized and explicit convection experiments. We also
conducted a novel analysis of the role of warming spatial con-
trasts, land–sea breeze circulations, and modified atmospheric
stability in modulating this response. We expect that land–sea
thermal contrast changes will affect breeze circulations, and ver-
tical differences in the response to global warming will modify
vertical profiles and stability. In combination, they will have im-
plications for future climate precipitation regimes in the region.
Since the interactions between convection and the environment
are represented differently in explicit and parameterized convec-
tion models, precipitation responses to climate change will likely
differ between these models too. In view of this possibility and
the expectations around convection-permitting models for future
projections (Fosser et al. 2020; Prein et al. 2020; Lucas-Picher
et al. 2021), we explore the rainfall response to increased tem-
perature in both explicit and parameterized convection experi-
ments at very high resolution.

The rate at which precipitation responds to surface temperature
changes is known as precipitation scaling (Trenberth 1999; Held
and Soden 2006) and has two main components: dynamical and
thermodynamical [see Box 11.1 in Seneviratne et al. (2021)]. In
the past, the covariational term was also explored (Bony et al.
2004). The thermodynamical component is linked to the Clausius–
Clapeyron relationship}increased atmospheric water-holding
capacity with temperature}and is a primary mechanism for
climate-scale precipitation changes. Under climate change condi-
tions, this should contribute to more intense precipitation rates,
particularly for extremes (Drobinski et al. 2018). The dynamical
component includes changes in large-scale circulation patterns
that determine the supply of moisture and in local circulations that
contribute to vertical motions. The intensification of sea breeze, at-
mospheric instability, and convective processes is framed in the lat-
ter group (i.e., local circulations). Here, we focus on the role of
local circulations to explain the spatial patterns of precipitation
changes, which are related to the dynamical part. However, we
also explore the contribution of thermodynamical changes to pro-
vide a comprehensive picture. We examine the separate contribu-
tion of thermodynamical and dynamical mechanisms to intense
precipitation changes in the region and we identify differences be-
tween parameterized and explicit convection models in this
context.

2. Methods

a. Model and present-climate experiments

In this study, we use the Weather Research and Forecasting
(WRF) Model v3.9.1 (Skamarock et al. 2008) to simulate

the atmosphere over the Maritime Continent and investi-
gate rainfall patterns under climate change conditions. The
model was run at 4-km spatial resolution over a domain
covering 5916 km 3 2556 km (1479 3 639 grid points) in the
Maritime Continent and resolving the vertical with 50 hybrid
coordinate levels. The experiments span three consecutive
austral summers (1 November–1 March in 2013/14, 2014/15,
and 2015/16), each preceded by a 10-day spinup period
(22–31 October) that was discarded in the analysis. The
analysis period covers the wet season for most of the
Maritime Continent and the selected years span both posi-
tive and negative phases of El Niño–Southern Oscillation.

The physical parameterization schemes are among the most
widely used options and were chosen according to previous
studies over the region (Li et al. 2017; Argüeso et al. 2016;
Vincent and Lane 2017). The setup consists in the WRF sin-
gle-moment six-class microphysics scheme (WSM6; Hong and
Lim 2006), the Yonsei University (YSU) scheme for planetary
boundary layer turbulence, the Rapid Radiative Transfer
Model (RRTM) scheme for longwave radiation, the Goddard
scheme for shortwave radiation, the Noah land surface model.
and the MM5 similarity scheme for the surface layer. In the
parameterized convection experiment, the Betts–Miller–Janjić
(BMJ; Betts andMiller 1986, 1993; Janjic 1994) scheme was cho-
sen to represent both deep and shallow convection, while it was
turned off for the explicit convection experiment [see Argüeso
et al. (2020) for additional details on the model configuration].
In this framework, clouds are driven by the microphysics
parameterization regardless of the convective representa-
tion. However, the environmental conditions in the model
will depend on the convective representation and thus the
microphysics scheme will likely generate different clouds.
In the explicit simulations, it is the model equations (dy-
namical core) that represent convection and its effects on
the atmosphere vertical profile. In the parameterized runs,
the BMJ scheme does not directly inhibit explicit convec-
tion, but it reduces the potential for explicit convection be-
cause it removes energy from the atmosphere through the
adjustment toward a stable vertical profile. Explicit convec-
tion at scales resolved by the model grid is still possible
though, especially in environments that favor strong con-
vective processes.

Present climate experiments are directly initialized and driven
by ERA5 reanalysis (Hersbach et al. 2020) at ∼0.38 spatial res-
olution and updated every 6 h. Argüeso et al. (2020) already an-
alyzed these simulations and compared them against satellite-
derived products to examine the role of different convective
representations and the spatial resolution in representing
realistic rainfall features. They concluded that, as opposed to
higher-resolution experiments, 4 km provides the best esti-
mates of precipitation while maintaining computational and
storage costs affordable. This is the upper boundary of the
convective gray zone (Prein et al. 2015), a range of spatial res-
olutions (∼4–10 km) where explicit and parameterized con-
vection may compete. It is yet unclear whether convection should
be parameterized in this range. Thus, it further justifies the analy-
sis of both parameterized and explicit convection setups.

A RGÜE S O E T A L . 55211 SEPTEMBER 2022

Authenticated mfriedman | Downloaded 08/11/22 12:02 PM UTC



b. Pseudo global warming experiments

This study expands the existing set of runs in Argüeso et al.
(2020) by incorporating pseudo global warming (PGW; (Schär
et al. 1996) experiments to examine the response of rainfall to
a particular climate change signal. These experiments were
built adding the climate change signal obtained from a global
climate multimodel ensemble from phase 5 of the Coupled
Intercomparison Model Project (CMIP5). We calculated the
seasonal cycle of all variables ingested by the model (i.e.,
wind components, humidity, geopotential height, and temper-
ature at pressure levels; as well as 2-m dewpoint temperature,
2-m temperature, 10-m wind components, surface pressure,
mean sea level pressure, and sea surface temperature) for his-
torical (1989–2009) and future (2080–2100) climate experi-
ments from 33 GCMs (see the online supplemental material).
We computed the climate change signal for each calendar
month, each variable, and each model, and interpolate them to
a common 0.728 grid to calculate a multimodel mean climate
change signal. These monthly changes are linearly interpolated
in time to 6-hourly intervals and nearest-neighbor interpolated
to the ERA5 grid. Then they are added to ERA5 to create the
initial and boundary conditions to driveWRF under a synthetic
future climate scenario. The PGWmethod has been previously
evaluated in a “perfect model approach” with satisfactory re-
sults (Yoshikane et al. 2012; Donat-Magnin et al. 2021) and
was applied in a wide range of studies from tropical cyclones
(Chen et al. 2020) to ice sheets (Donat-Magnin et al. 2021).

The future climate change signal is here represented by the
representative concentration pathway 8.5 (RCP8.5 scenario).
We chose this high-emission scenario to examine the impact
of a marked climate change signal on the Maritime Continent,
but this choice does not imply any assumptions on its
likeliness.

Even though this experiment setup does not constitute a
rigorous future climate projection and thus has limitations, it
offers numerous advantages. While runs are not long enough
to be completely representative of the climate, their duration is
a very good reason to force future climate runs with clima-
tological anomalies from the GCMs’ multimodel ensemble
(MMM). This way, our results are less dependent on the inter-
annual variability produced by individual models for specific
years. Furthermore, it is often argued that changes projected
by the MMM are in general more credible than projections
produced by individual models (Knutti et al. 2010). In addition,
CMIP5 model biases are stationary even under strong climate
changes (Krinner and Flanner 2018) and hence this method
partly overcomes the biases in the climate states produced by
individual models. The MMM estimates are still subjected to
biases such as the sea surface temperature warming patterns
that require complex bias-correction methods (Dutheil et al.
2020), but the same applies to direct downscaling of individual
highly biased GCMs. The PGW method includes the thermo-
dynamical effects produced by a given climate change signal
and some dynamical features. For example, it considers the
mean change in the large-scale dynamics because the geo-
strophic balance is linear. However, it misses changes in the
structure and variability of circulation patterns, as well as some

nonlinear large-scale dynamics and variability. These include
phenomena such as MJO or ENSO, some of which may un-
dergo frequency changes in the future (Cai et al. 2018]. Another
potential limitation is that nonstationary biases that may be
shared by CMIP5 models are not removed with the multimodel
mean. It is important to note that these features can affect the
spatial patterns of precipitation changes in our experiments.

Overall, the method constitutes an interesting, efficient, and
solid approach to quantify the response of the climate change
system to plausible future conditions. It also brings the analysis
down to the physical-process level at feasible computational
costs, especially considering the demands of convection-
permitting experiments at continental scales. In this study,
we refer to the PGW simulations as “future” experiments
for reasons of clarity. Changes projected by the selected
multimodel ensemble over the Maritime Continent are shown
in the online supplemental material (see Fig. S1) for tempera-
ture, wind, precipitation, and integrated water vapor.

c. Scaling calculation

We first calculate the scaling of extreme precipitation
with temperature directly from the model outputs. To fur-
ther understand the underlying mechanisms, we also calcu-
late changes in precipitation extremes using the physical
scaling diagnostic described in O’Gorman and Schneider
(2009b), which estimates precipitation rates from vertical pro-
files of vertical pressure velocity, temperature, and pressure.
This methodology is usually applied to high-percentile precip-
itation events by selecting times when they occur. It expresses
the precipitation rate during an extreme event at each grid
point as

Pe ∼ 2 ve

dqs
dp

∣∣∣∣
u*,Te

{ }
, (1)

where Pe is the precipitation amount during an extreme event,
ve is the corresponding vertical pressure velocity, {·} is a mass-
weighted integral over the troposphere, and the remainder is
the vertical derivative of the saturation specific humidity
qs at constant saturation equivalent potential temperature
u* (i.e., moist adiabatic) and evaluated at the mean tempera-
ture Te during the intense rainfall event [see O’Gorman and
Schneider (2009b) for additional details]. By comparing esti-
mates from present- and future-climate experiments, it is possi-
ble to approximate the full precipitation scaling for extremes,
which aggregates the effects of thermodynamic and dynamic
processes.

Following Pfahl et al. (2017), we can decompose changes in
heavy rainfall into thermodynamic and dynamic contribu-
tions. To calculate the separate effect of thermodynamic pro-
cesses, we ignore changes in the vertical profile of ve and we
use instead the time average from present climate experiments
calculated only for extreme precipitation hours (ve_present ). The
new heavy rainfall estimates [Pe_thermo; Eq. (2)] will be due to
changes in the vertical derivative of qs only. The dynamic con-
tribution [Pe_dyn; Eq. (3)] is calculated by subtracting the ther-
modynamic scaling [Eq. (2)] from the full scaling [Eq. (1)]:
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Pe_thermo ∼ 2 ve_present
dqs
dp u* ,Te

∣∣∣∣
}
,

{
(2)

Pe_dyn 5 Pe 2 Pe_thermo: (3)

In this study, we apply for the first time this diagnostic to
convection-permitting experiments and hourly model outputs
to disentangle the contribution of thermodynamic and dynamic
processes and explain possible deviations from the Clausius-
Clapeyron relationship at very high spatiotemporal scales.
Prior to applying the scaling, we horizontally smoothed the
vertical pressure velocity (ve)}not the vertical derivative of
qs}using a Gaussian filter with a standard deviation of 20 km.
Reasons for this include 1) to reduce the effect of downdrafts
produced by intense rainfall within the convective cell and
characterize the environment producing the extreme episode,
2) to filter out the influence of single-cell storms that models
may generate at these scales (Murata et al. 2017), and 3) to bet-
ter match the scales previously used with this method (∼100 km)
(Pfahl et al. 2017). Scaling was also calculated without any prior
spatial smoothing.

3. Results

a. Precipitation changes in explicit and parameterized
convection models

In this section, we analyze changes in mean precipitation
as simulated by the parameterized (PA) and explicit (EX)
convection experiments. We compare present and future
experiments over three consecutive austral summers
[November–February (NDJF)] and calculate changes relative

to present-climate values [(future 2 present) 3 100/present].
Mean precipitation changes show a prominent contrast be-
tween a net increase over land and a decrease over the ocean
(Fig. 2). Both model configurations simulate a domain-average
decrease in mean precipitation (213.3% for PA and 26.2%
for EX), probably because they are driven by the same bound-
ary conditions, which exert control over the large-scale dynam-
ics. The MMM of the CMIP5 ensemble used here to create the
PGW scenario project a slight increase in the domain-average
rainfall (4.9%), but precipitation is a model prognostic variable
and is not used to generate the boundary conditions. While this
difference in the sign of changes may seem contradictory,
the link between the large-scale conditions and precipita-
tion in models is complex. Factors that contribute to this dis-
parity include differences in the spatial scale (grid-averaging
effects), in the efficiency of convective schemes, in the response
of convective schemes to environmental changes, and in surface
evapotranspiration. Furthermore, the CMIP5 ensemble projects
a wide range of possible changes over the domain (between
216.6% and 19.8%). Despite these differences and the diver-
gence across CMIP5 models (IPCC 2013; see also Fig. S1), the
ensemble consistently projects larger increases over land than
over the ocean, which is coherent with our results (Fig. 2).

Both our experiments produce an increase in rainfall over
land (4.3% PA; 5.0% EX) and a decrease over the ocean
(220.2% PA; 212.7% EX). Narrow waters in between is-
lands and coastal areas are notable exceptions to this general
response. Thus, according to our experiments, a warmer at-
mosphere would generate more rainfall over land in the
Maritime Continent, although the spatial variability is large
over both land and ocean (Fig. 2e). Changes are similar across
all three austral summers in the PA runs and results from one

FIG. 2. Present mean precipitation rates in the (a) parameterized and (c) explicit convection runs, and relative mean precipitation
changes using the PGW approach (future minus present) for (b) parameterized and (d) explicit convection runs. Areas with no statistically
significant changes according to a Mann–Whitney U test at the 99% confidence level are masked out in (b) and (d). These areas are 7.9%
and 14.7% of the domain, respectively. (e) Boxplots show changes for all (gray), ocean-only (blue), and land-only (red) grid cells for pa-
rameterized (hatched) and explicit (solid) experiments. The boxes represent the interquartile range, whiskers are the 10th–90th percentile
range, horizontal lines are the median changes over all grid points in each category, and markers show the median for each of the 4-month
periods individually.
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year deviate from the other two in the EX run (Fig. 2e and
Fig. S2). Altogether, this provides confidence on the robust-
ness of the results.

The spatial pattern of precipitation changes is broadly
similar in both experiments, but there are features in the
response that differ between the two. First, the magnitude
of changes: PA produces larger decreases of rainfall over
the ocean. Second, EX experiments are spatially noisier
and so is the response to warming. This is partly explained
by the length of the simulations, but PA is spatially much
smoother, which suggests that the noise is inherent to how
convective processes are represented. In fact, changes in
EX shows a larger year-to-year variability than PA under the
same large-scale conditions (Fig. 2e). This contrast is relevant
because the next generation of climate projections will shift to-
ward convection-permitting models (Prein et al. 2015, 2020),
which may produce less spatially homogeneous projections
if they behave like our model. None of the two model pro-
jections can be deemed more likely than the other because
their relative performance varies depending on the metric
analyzed (Argüeso et al. 2020). However, explicit convection
brings increased realism of precipitation features often misrep-
resented in models, such as the diurnal cycle and its coupling
with the land–sea breeze (Birch et al. 2015; Argüeso et al.
2020).

In addition to mean precipitation, we analyze the model ex-
treme precipitation response to a climate change signal and
quantify the role of convective representation in that response
(Fig. 3). We characterize changes in precipitation events
through a range of percentiles (50th–99.9th) and focus on the
upper tail of the distribution (95th, 98th, 99th, and 99.9th
percentiles). The statistical significance of changes was
tested at the 90% confidence level using a bootstrapping
approach ased on resampling with replacement following
Contractor et al. (2018, 2021). For each grid point, we
concatenated present and future, and resampled the result-
ing time series with replacement under the null hypothesis
that there is no change. The same permutation is used for all
grid points to preserve spatial dependence in the resampled
data. The resampling was done using 12-h blocks to preserve
temporal dependence of events. This assumes independence
of rainfall from one 12-h period to the next, which is sup-
ported by the distinct diurnal cycle of rainfall in the region.
The diurnal cycle was considered when defining the blocks
(0600–1800 and 1800–0600 UTC) so that the rainfall peak at
around 1700 local standard time (LST) is not split across two
blocks. This approach neglects correlation in rainfall on
daily or longer time scales, which could lead to some overes-
timation in the number of independent samples.

We split the resampled time series in two equal parts and
calculate the change in the percentiles between the two. The
process was repeated 1000 times to build a distribution of
quantile change ratios between the two, which is normally dis-
tributed around 0, and estimate the p values of the original
quantile change ratios. Percentiles were calculated for each
grid point and each period (present and future) separately.
Percentiles can be calculated using all hourly values (Schär
et al. 2016) or wet-only values (Chan et al. 2016) depending

on the purpose of the analyses. While both may have advan-
tages, we chose the all-hourly values approach because having
a fixed population of events ensures that 1) changes in each
percentile univocally mean that events exceeding that percen-
tile (extreme) must change, 2) upper percentiles are not af-
fected by changes in light rain frequency, and 3) percentiles
represent a fixed number of events at all locations, runs, and
periods. For instance, the upper percentiles we focus on rep-
resent approximately 433, 173, 87, and 9 hourly events in all
grid cells and all experiments. These advantages make our re-
sults easier to interpret in the context of this study. Present
climate values of these percentiles are provided in the online
supplemental material (Fig. S3). Changes in percentiles using
wet-only values (.0.1 mm h21) are shown in Fig. S4 for com-
parison with the all-hourly values approach. Changes in wet-
only percentiles are comparable to higher percentile changes
using all-hourly values. This is because wet-only percentiles
characterize a higher section of the rainfall distribution tail.
Although changes in wet-only percentiles are affected by
changes in the entire distribution of rainfall, the spatial pat-
terns between the two approaches are very similar for very
intense precipitation events. They both show a land–sea con-
trast. Differences between PA and EX are also similar using
one approach or another.

Domain-average changes of precipitation percentiles are
summarized in Table 1 along with separate changes over land
and ocean. These changes were computed using the mean of
percentiles each region (domain, land, and ocean) for both
present and future runs, and then the relative changes with re-
spect to present climate were calculated. PA suggests a de-
crease in all selected percentiles when aggregating over the
entire domain and ocean grid points. It also suggests an in-
crease in all but the 95th percentile over land. EX projects a
similar behavior, except for the highest one (99.9th), which in-
creases both over land and ocean. On average, EX produces
larger decreases for the 95th and 98th percentiles compared
to PA. This difference is strongly dominated by decreases
over water in EX, since changes over land are very similar be-
tween the two experiments. As we move to more intense pre-
cipitation events (99th), the contrast between land and ocean
is further enhanced, especially for PA, which suggests sub-
stantial changes both over land and ocean but with opposite
signs (9.6% and232.6%, respectively). Indeed, some large is-
lands such as New Guinea show a strong and statistically sig-
nificant response of the upper tail to warming in the PA
experiment (Fig. 3i).

The highest end of the distribution (99.9th percentile) rep-
resents events above 10 mm h21 in most cases and well above
25 mm h21 in many land grid points (Fig. S3). In EX, the 99.9th
increases over land (14.9%) under climate change conditions,
but there is no clear signal over the ocean. In fact, significant
changes are mostly located over land. PA shows an increase
in extreme precipitation (99.9th) over land (22.4%) too, but it
produces significant decreases over the ocean (210.9%). As a
result, PA exhibits a domain-average decrease of high-end ex-
tremes (23.2%), while EX produces an increase (4.0%).

Figure 3 provides a more detailed and visual description of
the precipitation response to warming. As opposed to the
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FIG. 3. Changes in rainfall percentiles. Statistics of changes over the entire domain (gray), ocean-only (blue), and
land-only (red) grid points for (a) the parameterized case and (b) the explicit case. Boxes represent the interquartile
range; whiskers are the 10th–90th percentile range, and horizontal lines are the medians. Spatial patterns of relative
changes in rainfall for the (c),(d) 95th, (e),(f) 98th, (g),(h) 99th, and (i),(j) 99.9th percentiles for the (left) parameter-
ized and (right) explicit model setups. Statistical significance was tested using a bootstrap approach based on 12-h
blocks resampling with replacement repeated 1000 times. According to the test, 43.2%, 46.7%, 42.1% and 19.5% of
all the grid points show significant changes for the corresponding percentiles in the parameterized runs, and 52.2%,
35.3%, 25.8%, and 13.1% for the explicit case. Nonsignificant changes were masked out.

A RGÜE S O E T A L . 55251 SEPTEMBER 2022

Authenticated mfriedman | Downloaded 08/11/22 12:02 PM UTC



summary discussed above (Table 1), Fig. 3 includes aggre-
gated information on other percentiles (50th–100th) and
shows the spatial variability of changes. Rates below the 90th
percentiles are usually light rainfall events (,0.1 mm h21) in
EX (Fig. S3), and their contribution to total precipitation is lim-
ited. The contribution of events below the 90th percentile to to-
tal precipitation may be larger in PA, because the 0.1 mm h21

rate is reached at a much lower percentile (70th). This is likely
due to the drizzle effect that typically affect models with con-
vective schemes (Gutowski et al. 2003; Sun et al. 2006; Dai
2006; Stephens et al. 2010; Pendergrass and Hartmann 2014).

Moderate rainfall events (95th percentile) decrease with
warming in most locations according to both experiments
(Figs. 3c,d). Very few grid points show an increase of moder-
ate precipitation, and they are mostly located over or near the
islands. The land–sea contrast becomes increasingly clear in
the upper percentiles for both experiments (Figs. 3c–j). How-
ever, EX already concentrates rainfall over land much more
than PA under present climate conditions, so the contrast will
become even sharper in EX under warming. Therefore, the
spatial pattern of mean precipitation changes (Fig. 2) is
largely explained by changes in the high end of the distribu-
tion, according to Fig. 3.

Overall, explicit and parameterized convection produce dif-
ferent precipitation distributions and different precipitation
changes under the same large-scale climate change signal, es-
pecially in the upper tail of the distribution. Although the spa-
tial pattern of changes is broadly similar (land–sea contrast),
their fine spatial detail, their magnitude, and the response of
each percentile to climate change is different between the two
convective representations.

b. Thermodynamical and dynamical contributions
to precipitation changes

Our experiments suggest that the islands of the Maritime
Continent will undergo higher precipitation rates and more
intense rainfall extremes in a warmer climate. Mechanisms
that produce rainfall changes are often interlaced and their
contributions may act in opposite directions.

We quantified their combined effect by calculating changes
in high percentiles of precipitation and express them as a ratio
with respect to the domain-average near-surface warming (the
direct method). Using near-surface temperature to estimate
rainfall scaling imposes important limitations because it does
not consider changes in moisture availability, which often play
a primary role in defining precipitation extremes (Lenderink
et al. 2017). Also, it assumes homogeneous warming in the ver-
tical and thus does not allow for different changes in the atmo-
spheric water-holding capacity at different vertical levels.
However, it is a standard way of measuring the precipitation
scaling (Westra et al. 2014; Bao et al. 2017; Lenderink et al.
2017; Drobinski et al. 2018; Allan et al. 2020) because it relies
on widely available observations and model outputs. We
also estimated the aggregated contribution of the thermo-
dynamical and dynamical terms of rainfall scaling with tem-
perature using the theoretical approach described in
section 2c (O’Gorman and Schneider 2009a), and we refer
to this method as full scaling. The precipitation scaling was
decomposed into thermodynamical and dynamical terms
following Pfahl et al. (2017). The direct method serves as a
backdrop to test the adequacy of the theoretical approach
(full scaling).

We focus on the scaling of the 99th percentile. For all meth-
ods we quantified the scaling by calculating the mean of all
events above the percentile for each period and each grid
point, and compute the change relative to present climate val-
ues, as we have done with other precipitation changes. Then,
we divide it by the domain-average near-surface temperature
change and estimate the scaling of intense rainfall with tem-
perature for both experiments (Figs. 4a–d). The direct scaling cal-
culation shows a strong land–sea contrast of the scaling in PA.
Most islands undergo increases in the range 10%–20% K21,
while much of the ocean experience decreases, sometimes as
large as 220% K21. The spatial pattern of scaling is similar in
EX, but the rates are not as pronounced.

The full scaling estimates (Figs. 4c,d) yield results that com-
pare very well with the direct scaling calculation, including
both the pattern and the magnitude of changes. Figures 4a–d
support the idea that warming leads to processes favoring
more intense precipitation over land, while changes of any
sign are plausible over water. Ignoring changes in vertical ve-
locities in Eq. (1) (see details in section 2c), we can estimate
the separate contribution of thermodynamic (thermo) pro-
cesses to the scaling (Figs. 4e,f). The thermodynamic contri-
bution to extreme precipitation changes is spatially much
more homogeneous than the full scaling, although it still pre-
sents some land–sea contrast in EX. In both experiments, the
thermodynamic processes contribute to increases in the range
4.2%–8.2% K21 over virtually the entire domain (95% of grid
points), with slightly higher values for EX (4.3%–8.2% K21)
than for PA (4.2%–7.5% K21). This is roughly consistent with
the Clausius-Clapeyron relationship, which establishes an ap-
proximate increase in rainfall rates of 7% per degree of near-
surface warming (Trenberth et al. 2003). The scaling methods
produce similar results when using different percentiles (95th
and 99.9th; see Figs. S5 and S6, respectively).

TABLE 1. Domain-average changes in mean precipitation and
the upper percentiles of hourly rainfall for the parameterized
(PA) and explicit (EX) convection experiments. Changes are
shown for all grid points, land-only grid points, and ocean-only
grid points. Changes are in percentage with respect to present
climate, and positive changes are in bold typeface.

Mean 95th 98th 99th 99.9th

PA
Total 213.3 29.8 214.4 219.2 23.2
Ocean 220.2 211.8 222.0 232.6 210.9
Land 4.3 25.3 1.5 9.6 22.4

EX
Total 26.2 218.9 217.3 212.8 4.0
Ocean 212.7 247.1 233.4 223.7 0.6
Land 5.0 25.3 0.6 5.4 14.9
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In the results above, the vertical pressure velocity (ve) was
smoothed using a 20-km Gaussian filter prior to calculating
the scaling. We have also calculated the scaling without the
smoothing to determine the impact of this choice (Fig. S7)
and found that the smoothing considerably reduces the noise
in both model configurations, particularly in EX. While the
overall pattern is similar between the two approaches, the
spatial details and magnitude of the full (theoretical) scaling
are closer to the direct scaling when smoothing ve.

Large spatial variations in direct and full scaling estimates
can only be explained by dynamic processes, because the
thermo term is spatially homogeneous. The contribution of
dynamic processes is calculated as the difference between the
full scaling and the thermo term (Pfahl et al. 2017). The dynam-
ical term enhances or opposes the effect of the thermodynamic
mechanisms through changes in vertical motions during
extreme precipitation events. Therefore, heterogeneities
in vertical motions are responsible for the spatial noise in
the dynamical term (Fig. S8), which modulates the homo-
geneous thermodynamic contribution. This explains the
existence of positive and negative values of direct and full
scaling close together. Although this may be alleviated
with longer runs and strengthening the Gaussian spatial
filter applied to the vertical velocity, differences between

the two experiments suggest that the nature of the con-
vective scheme may also play a role in smoothing out spa-
tial heterogeneities of vertical motions. In fact, explicit
convection experiments running at resolutions of a few
kilometers are prone to generate single-grid-cell precipi-
tating systems (Murata et al. 2017) that may reflect into
this spatial noise.

In general, our results indicate that the dynamic term coun-
teracts the thermodynamic effect over the ocean. Over land,
dynamical processes tend to enhance precipitation scaling in
PA. In EX, the dynamic contribution also presents a land–sea
contrast, but both positive and negative contributions were
obtained over land. This land–sea contrast is consistent with
results in Pfahl et al. (2017) using GCMs, which suggested
that dynamic processes enhanced changes in daily precipita-
tion extremes over large islands in the Maritime Continent.
Differences between our two model configurations are further
discussed in the next section, where the vertical structure of
the atmosphere is analyzed.

c. Land–sea thermal contrasts, stability, and
precipitation changes

Our hypothesis is that warming contrasts play a key role in
the spatial pattern of the archipelago’s rainfall response to a

FIG. 4. Scaling of the 99th percentile of precipitation with respect to the domain-average 2-m temperature
change using (a),(b) hourly precipitation outputs from the model (direct scaling), (c),(d) the full scaling as esti-
mated by the theoretical diagnostic from O’Gorman and Schneider (2009b), and (e),(f) the thermodynamic
scaling as approximated by Pfahl et al. (2017), for (left) the parameterized experiment and (right) the explicit simulation.
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changing climate. Changes in moisture availability due to in-
creased atmospheric water-holding capacity and changes in
the large-scale dynamics are spatially too uniform to explain
the fine spatial structure of precipitation changes. In the hori-
zontal, land warms faster than the ocean due to their different
heat capacity, which intensifies current land–sea thermal con-
trasts. In the vertical, changes in temperature and humidity
profiles may be different at each location, which affects atmo-
spheric stability at different rates. These spatial contrasts cre-
ate more favorable conditions for mesoscale circulations and
increased potential for convective initiation. Whether this po-
tential is realized depends on the convective representation.

For example, future climate change increases the land–sea
thermal contrast (Figs. 5a,b) and the domain-average increase
is very similar in both experiments. Air over land warms
faster (3.308C in both cases) than the air above the ocean
(2.908C in EX; 2.948C in PA). Changes in thermal contrast help
explain precipitation changes to some extent, as we described in
the previous section, but differences between parameterized

and explicit runs indicate that the convective representation is
crucial to define the rainfall response to this thermal forcing.

Here, we investigate the mechanism that links changes in ther-
mal land–sea contrast and rainfall. The primary source of convec-
tive potential over the islands is the moisture flux convergence at
the lower levels. Moisture flux convergence was calculated using

MFC 5 2= · (qVh), (4)

where MFC is the moisture flux convergence, q is water vapor
mixing ratio at 2 m, andVh is the horizontal wind vector at 10 m.
The approach described by Bluestein (1992) was applied to deal
with discrete variables.

Because of the enhanced land–sea thermal contrast, the
model produces an increase in near-surface MFC along the
coastlines (Figs. 5c,d). This agrees with results in Tangang
et al. (2020), who also found an increase in low-level mois-
ture flux convergence over the islands using multiple regional
climate simulations. This MFC increase on the coastline is ac-
companied by a decrease far outside over the ocean, where

FIG. 5. Near-surface temperature (2 m) changes with respect to the domain average warming [top-left numbers in
(a) and (b)] over the entire period (NDJF 2013–16) for (a) parameterized and (b) fully explicit convection runs.
Changes in near-surface moisture flux convergence (spatially smoothed using a Gaussian filter with standard deviation
of three grid points) for (c) parameterized and (d) fully explicit experiments. Also shown are changes in MFC due to
(e),(f) advection changes and (g),(h) convergence changes following decomposition in Banacos and Schultz (2005).
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negative values are observed almost everywhere. MFC was
decomposed into two terms [horizontal advection of specific
humidity and horizontal mass convergence; Eq. (5)] follow-
ing Banacos and Schultz (2005),

MFC 5 2Vh · =q 2 q= · Vh, (5)

and then changes were calculated for each of them to estimate
their relative contribution to MFC changes. This decomposi-
tion reveals that MFC changes where largely driven by hori-
zontal convergence changes, while advection changes play a
negligible role on average (Figs. 5e–h).

Therefore, a higher MFC (along the coast and mostly driven
by convergence changes) points in the same direction as our
hypothesis that mesoscale circulations (sea breeze type) inten-
sify under warmer conditions. This effect is even more marked
during the time of the day when sea-breeze usually builds up in
the region (1000–1600 LST; Fig. S9). Hence, our results are
coherent with the idea that land–sea thermal contrasts and the
resulting MFC changes are drivers of rainfall redistribution
and more intense precipitation over land.

This mechanism may be partly responsible for the intensi-
fication of rainfall over land, but there must be other factors
(e.g., stability) causing differences in precipitation changes
between the two experiments despite their very similar
changes in thermal contrasts and MFC.

Under global warming, the upper troposphere warms faster
than the lower troposphere in the tropics, which increases dry
static stability (Schneider et al. 2010; Chou et al. 2013). We es-
timated dry static stability in the lower troposphere from both
our experiments using the difference in potential temperature
(u) between the lower (850 hPa) and the middle (500 hPa)
troposphere. In both simulations, this difference is reduced
in the future, thus indicating increased dry static stability
under climate change, especially for the explicit convection
run (Fig. S10). However, these changes in temperature are
also accompanied by changes in humidity, which directly af-
fect moist adiabatic processes that govern deep convection.
To incorporate this factor, we analyzed changes in potential
stability (also called moist static stability or convective stabil-
ity). Herein, we speak in terms of instability to make the inter-
pretation of results more intuitive, but it is conceptually the
same. We examined the equivalent potential temperature (ue)
and its vertical profiles, which accounts for changes in both
temperature and humidity. The difference in ue between the
900–800- and 600–400-hPa layers provides a measure of
potential instability.

This choice is motivated by the fact that atmospheric
models (e.g., CMIP5 ensemble; Fig. S11) often show a discon-
tinuity in the vertical derivative of ue, which is likely linked to
how convective processes are parameterized. The discontinu-
ity is linked to how the schemes work around the freezing

FIG. 6. Atmospheric potential instability changes in parameterized and explicit convection runs. Time-averaged mean vertical profiles
of ue over (a) land grid points and (b) ocean grid points, and (c) their changes (future minus present). Black is for present climate and gray
for future climate. Blue lines are changes over water only and red lines are changes over land only. Solid lines show parameterized convec-
tion experiments and dashed lines are for explicit convection runs. (d) Diurnal cycle of potential instability changes (u850–500hPae ) for ocean
(blue) and land (red) grid points, and parameterized (solid) and explicit (dashed) convection experiments. Also shown is the spatial distri-
bution of potential instability changes for the (e) parameterized and (f) explicit convection simulations. Changes were statistically signifi-
cant at the 99% confidence level in all grid points according to a two-sided Mann–WhitneyU test.
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level, their interaction with microphysics schemes and the
quasi-equilibrium profile used in certain parameterizations
such as the Betts–Miller–Janjić, which is used in the parame-
terized simulations here. Indeed, this behavior is also detected
in PA around the 500-hPa level. This reflects on changes of
the vertical profiles simply because the discontinuity is shifted
upward. To reduce the dependence of our results on this is-
sue, which we assume is a model artifact, we computed poten-
tial instability using the above reference layers.

Vertical profiles of equivalent potential temperature (ue)
reveal that time-mean potential instability will increase every-
where under the prescribed climate change signal according
to both experiments (Fig. 6c). This is shown by steeper verti-
cal profiles of ue under future climate conditions with the larg-
est increases in ue near the surface (∼14–15 K). Changes over
land are on average very similar between PA and EX, and-
both show an intensification of instability in the early afternoon
(Fig. 6d). On the other hand, changes over the ocean are
slightly larger in PA and are flat throughout the day in both
model runs. This spatial distribution of potential instability
changes is further illustrated in Figs. 6e and 6f, which suggest
that instability will increase the most over large landmasses.
These changes were tested for statistical significance using a
Mann–Whitney U test at the 99% confidence level and they
are significant everywhere in the domain. The land–sea contrast
of potential instability changes is more pronounced in EX,
mostly because EX produces more moderate changes over
water. If we select only days when precipitation exceeds the

99.9th percentile in each grid cell and calculate the changes
in potential instability, EX produces much stronger changes
than PA during such events (Fig. S12). Therefore, despite
similar time-mean changes in potential stability and mean
precipitation changes, EX suggest more intense extreme pre-
cipitation in a warming climate accompanied by higher po-
tential instability.

To understand the link between this increase in potential
instability and precipitation extremes, we focus on potential
instability preceding events above the 99.9th percentile. To
that purpose, we selected 0.58 3 0.58 areas in the four largest
islands (squares in Fig. 1) and calculated the area-averaged
potential instability (u850–500hPae ) over the 12 h before any grid
cell exceeds its 99.9th percentile of hourly precipitation.
Figure 7 shows the relationship between the intensity of heavy
rainfall events versus the preceding potential instability for
present and future simulations, in both model configurations,
and over the four selected representative areas. Retaining
only dry hours to calculate convective instability as opposed
to all preceding hours was tested with no substantial differ-
ences (not shown) and we decided to keep the all-hour
approach so that all instability values were calculated using
the same number of preceding hours. Different accumulation
periods (6, 18, 24 h) and area sizes (0.28, 1.08) were also tested
with very similar results (not shown). Different locations
within each island were also examined to ensure our results
were robust and the outputs were qualitatively the same
(Figs. S14 and S15).

FIG. 7. Extreme precipitation events (.99.9th percentile) vs convective instability in different locations for present (blue) and future
(red) experiments using (top) convective parameterization and (bottom) explicit convection. Convective instability is measured as the
difference in equivalent potential temperature between the 900–800- and 600–400-hPa layers and averaged over the 12 h preceding the in-
tense rainfall event. Each dot represents an event in the areas delimited by squares in Fig. 1 and the contours represents the probability
estimated using a Gaussian kernel density estimator. All present and future point clouds are statistically different from each other using a
Fasano-Franceschini test at the 0.01 significance level.
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In all cases, the atmosphere reaches a clearly different state
where both potential instability and extreme rainfall intensity
are higher under a warmer climate. While potential instability
alone is not enough to determine the intensity of extreme
events for each of the periods separately, this is not surprising
since many other factors are involved in the generation of
heavy rainfall events, thus the dispersion of the point clouds.
However, it indicates that the model responses to climate
change in terms of precipitation extremes and potential insta-
bility are related to each other.

This relationship also reveals an interesting contrast be-
tween model runs. The fully explicit convection is much more
dispersed in the rainfall instability space depicted in Fig. 7.
Some of the differences between experiments noted before
can be interpreted through this feature. For instance, it shows
that the convective parameterization restricts the atmospheric
conditions to a given range because it continuously adjusts
the vertical profile toward an equilibrium state. The explicit
run, on the contrary, is more flexible in this sense, and it al-
lows for higher precipitation rates (Figs. S14 and S15). In fact,
it also produces situations with substantially larger potential
instability when the extremes occur (Fig. 7). As a result, the
response to climate change in PA is spatially more homoge-
neous than in EX, which produces a noisier signal because of
the higher degrees of freedom explicit convection provides.
Precipitation rates above the 99.9th percentile were also com-
pared to other variables such as potential temperature (u),
convective available potential energy (CAPE), and precipita-
ble water (PW) to illustrate their links in a changing climate
(Fig. S16). In agreement with our previous findings, changes
in the intensity of extreme rainfall are related to an increase
in dry static stability (u850–500hPa) and an increase in latent
conditional instability (CAPE). It also shows that this contrast
between changes in dry static stability (temperature depen-
dent) and convective stability (temperature and moisture de-
pendent) when extremes occur is mostly due to a higher
availability of precipitable water, which significantly increases
in the future.

Present and future bivariate distributions of rainfall and the
various instability metrics (Fig. 7; see also Figs. S14–S16) were
tested statistically to determine if they are significantly different.
All present and future bivariate distributions were statistically
different to each other at the 0.01 significance level using a multi-
dimensional version of the Kolgomorov–Smirnov (KS) test
(Fasano and Franceschini 1987). A classical 1D KS test was also
applied to present and future precipitation distributions and re-
sults were found to be different at the 0.01 significance level too.

Increased instability only produces precipitation changes if
convective circulation is intensified. Thus, changes in vertical
motions must be considered to explain the spatial contrasts of
rainfall changes (see section 3b). Here, we relate changes in
vertical pressure velocity (ve) that precede precipitation ex-
tremes with changes in the extremes themselves (Fig. 8). We
binned grid points by changes in extreme rainfall (total accu-
mulated above the 99th percentile). For each bin, we com-
puted the average change in the vertical profile of ve over the
6 h preceding each extreme event. We chose a 6-h period
because vertical motions due to convection start

approximately 6 h before the peak of the precipitation diur-
nal cycle in the region (Argüeso et al. 2020).

On average, the atmospheric environment preceding intense
rainfall is characterized by ascending motions almost through
the entire troposphere in both experiments and climate periods
(Figs. S17 and S18). Only the bottom and the top levels show
small positive values (descending motions). Thus, positive
changes ve can be generally interpreted as a weakening of as-
cending vertical motions. Both experiments concentrate stron-
ger vertical motions and rainfall extremes over land, which is
consistent with the picture described in section 3b. The aver-
age ve preceding rainfall extremes and its changes are spa-
tially more homogeneous in the parameterized case (not
shown), which is also consistent with the results above (Fig. 7;
see also Figs. S14–S16).

Not only rainfall extremes are collocated with more intense
upward motions, but also their changes. Areas where rainfall
extremes will increase the most coincide with stronger upward
motions, particularly above 800 hPa (red in Fig. 8). Likewise,
extreme rainfall decreases are accompanied by weakened as-
cending winds (blue in Fig. 8). Weakened vertical motions
(blue) extend across the zero-change line, hence small increases
(,20%) in extreme precipitation occur with decreases in verti-
cal rising motions, especially over land and when convection is
explicit (Fig. 8f). It is likely that changes in ve partly offset the
effect of warming, but the latter still dominates in this range.
These results are consistent with the decomposition of scaling
in dynamical and thermodynamical terms, where vertical
motions help explain spatial contrasts in extreme rainfall
changes. Similar results were obtained for other percentiles
too (95th and 99.9th; not shown).

Most ocean areas show a decrease in precipitation extremes
(99th percentile; Figs. 3g,h and 8c,d) and weakening of vertical
motions preceding such intense rainfall events (Figs. 8c,d). On
the other hand, upward vertical velocity before extreme events
tend to intensify where heavy rainfall increases over the ocean.

This aggregated view reveals some similarities and differ-
ences between the two convective representations. Both runs
expand the range of possible extremes to higher values, espe-
cially EX (Figs. S17 and S18). They also tend to increase the
land–sea contrast of ve under a warmer climate, particularly
PA, as shown the intensification of blue areas in Fig. 8c and red
areas in Fig. 8e. As for the differences, PA tends to produce
larger changes in vertical motions (Fig. 8), and they are spa-
tially more organized and uniform in the vertical (not shown).
In the explicit convection run, most changes of extreme pre-
cipitation over land lie around 20% (Fig. 8f, top) and vertical
motions are weakened in the lower-to-middle troposphere for
this range of precipitation and intensified in the atmosphere
above. This feature can be interpreted as a deepening of the
convective circulation and expansion of the convective cell
upward. Argüeso et al. (2020) also found that EX produces
deeper convective circulations than PA under present climate
condition, a difference that could be enhanced with warming.

Therefore, the importance of landmasses in the convective
development and their role as rainfall attractors in the two
model experiments is different. The concentration of rainfall
over land seems to strengthen under future climate conditions
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as the land–sea thermal contrast intensifies and the potential
instability increases, because they favor moisture convergence
and convective circulations over the islands. However, the
model responds differently to these changes depending on
how convection is represented, especially in terms of vertical
pressure velocity. The need for triggering factors in the ex-
plicit case and the constrains imposed by the deep parameteri-
zation scheme may help explain these differences in vertical
motions and precipitation intensities.

4. Conclusions

We studied the role of horizontal and vertical warming con-
trasts on precipitation changes in the Maritime Continent for

the late twenty-first century under a RCP8.5 scenario using a
pseudo global warming approach. We analyzed results from a
regional climate model operating at convection-permitting
scales with two different representations of deep convection:
parameterized and explicit.

We found that the model produces a domain-averaged
decrease of rainfall during the Maritime Continent wet season
(NDJF) for both convective representations, although there is
a marked land–ocean contrast. Both model configurations
tend to produce a decrease over the ocean and an increase
over land. Even though GCMs do not agree on the sign of rain-
fall changes for the region, their spatial pattern of changes is
consistent with the land–ocean contrast we obtained (Jourdain
et al. 2013; Wang et al. 2020). The ensemble mean of GCMs

FIG. 8. Changes in vertical pressure velocity (ve) vs changes in mean precipitation rates of events above the 99th
percentile of hourly rainfall averaged over (a),(b) all, (c),(d) ocean-only, and (e),(f) land-only grid points for the (left)
parameterized and (right) explicit convection experiments. Each panel includes a probability distribution of extreme
precipitation changes at the top to indicate the most frequent values of changes in the domain.
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selected in this study projects a domain-average increase in rain-
fall and in the vertically integrated water vapor. Thus, the de-
cline of domain-average precipitation suggested by our model
experiments cannot be explained by changes in the large-scale
water vapor supply (i.e., advection). Instead, it must be explained
by processes that transform the available water vapor into pre-
cipitation and how they are represented in models.

Our experiments suggest that the islands of the Maritime
Continent will undergo more intense mean and extreme pre-
cipitation in a warmer climate. However, the extremes behave
differently under the same large-scale climate change signal
depending on how convection is represented. This includes
their magnitude, spatial pattern, and the relative changes of
the various percentiles. The most prominent difference is that
the land–sea contrast of changes is more pronounced in the
parameterized runs. The upper percentiles of rainfall undergo
larger increases relative to present climate extremes when
convection is parameterized. However, explicit convection ex-
pands the range of possible future extremes to higher values.
This is partly because present climate extremes in EX are al-
ready more intense than in PA, but also because the convective
scheme constrains the response to warming. Therefore, future
generations of climate projections at convection-permitting res-
olutions may project different outlooks for rainfall extremes to
those currently available.

We determined the contribution of thermodynamical and
dynamical processes to changes in rainfall extremes under
a warmer climate. Thermodynamic effects account for
changes in precipitation extremes that are consistent with
the Clausius–Clapeyron relationship, and their contribution
is relatively homogeneous across the domain. Thus, we
need to invoke dynamical processes to explain features of
extreme rainfall changes, such as their magnitude range
(from 220% to 20% K21), their spatial contrasts, and the
divergences between the two model runs.

According to our simulations, the primary driver of changes
in the spatial distribution of rainfall is the land–sea thermal
contrast and its enhancement under climate change. Land
warms faster than the ocean, which favors local sea-breeze
type circulations. These circulations increase low-level mois-
ture flux convergence over land and contribute to create con-
ditions for deep convection development over land. They are
also responsible for suppressing rainfall generation over the
ocean to some extent.

Deep convection and heavy rainfall require atmospheric
instability to occur. Climate change modifies the vertical
profile of the atmosphere and thus alters the overall stabil-
ity. Although dry static stability increases under future cli-
mate conditions because the upper half of the troposphere
warms faster, the combined effect of temperature and humidity
changes in the vertical makes the atmosphere more unstable in
terms of moist static stability. While both model experiments
show this response to climate change, the convective scheme
constrains potential instability and extreme precipitation values
within a narrower range. Under future climate conditions, this
means the model with explicit convection allows heavier rain-
fall events to occur. Yet, changes relative to present climate
values are higher in the parameterized case. Also, the

convective scheme produces a response to climate change that
is spatially more uniform, while explicit convection generates
noisier patterns of extreme precipitation changes.

Deep convection entails intense upward vertical motions.
Thus, extreme precipitation is linked to high vertical pressure
velocity. We found that the model tends to concentrate strong
vertical motions and rainfall extremes over land, especially
when convection is explicitly resolved. In some land areas,
this is enhanced in future climate simulations, which explains
departures from the thermodynamic contribution to extreme
rainfall changes. Changes in vertical winds also indicate a pos-
sible expansion of the convective cell over the islands and a
slight weakening of upward motions in the midtroposphere.
Even though explicit convection produces more extreme rain-
fall events over land in the future (due to further concentra-
tion of upward motions over large islands and the lack of
convective scheme constrains), the parameterized case suggests
stronger changes relative to present climate values. In fact, the
model produces stronger changes in vertical motions preceding
extreme events with climate change when convection is param-
eterized. This refers not only to the strengthening of vertical
winds over land, but also to their weakening over the ocean. In
both model configurations, areas of stronger upward vertical
pressure velocity are collocated with positive changes in
extreme precipitation, and vice versa. This spatial coincidence,
together with the scaling decomposition into thermodynamical
and dynamical terms, evidences the role of vertical motions in
modulating the intensity of future climate rainfall events.

In summary, we showed that the way convection is repre-
sented is crucial in defining the model response to warming,
because it defines dynamical processes that shape the future
distribution of precipitation and the intensity of extremes.
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