SENSITIVITY OF CYCLONES TO INITIAL CONDITIONS: A NUMERICAL APPROACH THROUGH POTENTIAL VORTICITY INVERSION

Mediterranean School on Mesoscale Meteorology – 1st Edition (Alghero, Sardinia, June 7-11, 2004)

Romu Romero (Lecture 2)

INTRODUCTION- Lecture 2

HEAVY RAIN PRODUCING WESTERN MEDITERRANEAN CYCLONE

FACTORS — Two embedded upper level disturbances (positive PV anomalies) (dynamical factors)

How can the internal features of the flow dynamics (jet streaks, troughs, fronts, etc...) present in the initial conditions be **switched on / off** without compromising the delicate 3-D dynamical balances that govern both the model and actual meteorological fields ???

PIECEWISE PV INVERSION

FUNDAMENTALS PV- QG framework

- 1) Our starting point are the quasigeostrophic equations (in pressure coordinates):

$$\frac{\partial T}{\partial t} = -\vec{V}_g \cdot \vec{\nabla} T + \frac{p}{R_d} \sigma \omega$$

$$T = -\frac{p}{R_d} \frac{\partial \phi}{\partial p}$$
Hydrostatic

* Thermodynamic equation (adiabatic)
$$\frac{\partial T}{\partial t} = -\vec{V}_g \cdot \vec{\nabla}T + \frac{p}{R_d} \sigma \omega$$
Hydrostatic equation
$$\frac{\partial}{\partial t} \frac{\partial \phi}{\partial p} = -\vec{V}_g \cdot \vec{\nabla} \frac{\partial \phi}{\partial p} - \sigma \omega$$

where for the static stability parameter we will assume: $\sigma = -\frac{\alpha}{\theta} \frac{\partial \theta}{\partial p} \approx \sigma_{ref}(p)$

and remember the expression for the geostrophic wind: $\vec{V}_g = \frac{1}{f_o} \hat{k} \times \vec{\nabla} \phi$

$$\frac{\partial \zeta_g}{\partial t} = -\vec{V}_g \cdot \vec{\nabla}(\zeta_g + f) - f_0 D$$

* Vorticity equation (frictionless)
$$\frac{\partial \zeta_g}{\partial t} = -\vec{V}_g \cdot \vec{\nabla}(\zeta_g + f) - f_0 D$$
Continuity equation
$$\frac{\partial \zeta_g}{\partial t} = -\vec{V}_g \cdot \vec{\nabla}(\zeta_g + f) + f_0 \frac{\partial \omega}{\partial p}$$

where the geostrophic relative vorticity is defined as: $\zeta_g = \frac{1}{f_0} \nabla^2 \phi$

FUNDAMENTALS PV- QG framework

2) Using the thermodynamic equation, let's find an expression for $f_0 \frac{\partial \omega}{\partial p}$:

$$f_0 \frac{\partial \omega}{\partial p} = f_0 \frac{\partial}{\partial p} \left[\frac{1}{\sigma} \frac{\partial}{\partial t} \left(-\frac{\partial \phi}{\partial p} \right) \right] - f_0 \frac{\partial}{\partial p} \left\{ \frac{1}{\sigma} \left[-\vec{V}_g \cdot \vec{\nabla} \left(-\frac{\partial \phi}{\partial p} \right) \right] \right\}$$

 $-\frac{\partial \vec{V_g}}{\partial p} \cdot \vec{\sigma} \vec{\nabla} \left(-\frac{\partial \phi}{\partial p} \right) - \vec{V_g} \cdot \frac{\partial}{\partial p} \left[\frac{1}{\sigma} \vec{\nabla} \left(-\frac{\partial \phi}{\partial p} \right) \right]$ Thermal wind: $\vec{V_T} \equiv -\frac{\partial \vec{V_g}}{\partial p} = \frac{R_d}{f_0 p} \hat{k} \times \vec{\nabla} T$ $\propto T$ (from the hydrostatic relation)

resulting in the expression:
$$f_0 \frac{\partial \omega}{\partial p} = f_0 \frac{\partial}{\partial p} \left[\frac{1}{\sigma} \frac{\partial}{\partial t} \left(-\frac{\partial \phi}{\partial p} \right) \right] + f_0 \vec{V}_g \cdot \frac{\partial}{\partial p} \left[\frac{1}{\sigma} \vec{\nabla} \left(-\frac{\partial \phi}{\partial p} \right) \right]$$

FUNDAMENTALS PV- QG framework

3) And now substitute this expression in the vorticity equation:

$$\frac{\partial \zeta_{g}}{\partial t} = -\vec{V}_{g} \cdot \vec{\nabla} \left(\zeta_{g} + f \right) - f_{0} \frac{\partial}{\partial p} \left[\frac{1}{\sigma} \frac{\partial}{\partial t} \left(\frac{\partial \phi}{\partial p} \right) \right] - f_{0} \vec{V}_{g} \cdot \frac{\partial}{\partial p} \left[\frac{1}{\sigma} \vec{\nabla} \left(\frac{\partial \phi}{\partial p} \right) \right]$$

$$\sigma \approx \sigma_{ref}(p)$$

$$f = f(y)$$

$$\frac{\partial}{\partial t} \left[\zeta_{g} + f + \frac{\partial}{\partial p} \left(\frac{f_{0}}{\sigma} \frac{\partial \phi}{\partial p} \right) \right] = -\vec{V}_{g} \cdot \vec{\nabla} \left[\zeta_{g} + f + \frac{\partial}{\partial p} \left(\frac{f_{0}}{\sigma} \frac{\partial \phi}{\partial p} \right) \right]$$

and therefore we can define the quantity:
$$QGPV \equiv \zeta_g + f + \frac{\partial}{\partial p} \left(\frac{f_0}{\sigma} \frac{\partial \phi}{\partial p} \right)$$

such that ...

(Quasigeostrophic potential vorticity)

FUNDAMENTALS PV- QG framework

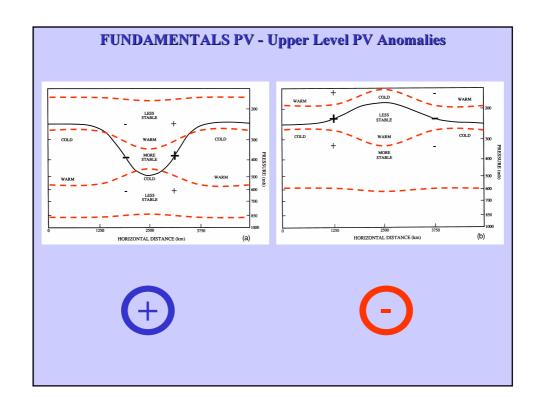
 $\frac{D_g}{Dt}(QGPV) = 0$ In an adiabatic and frictionless atmosphere, it is conserved following the geostrophic motion

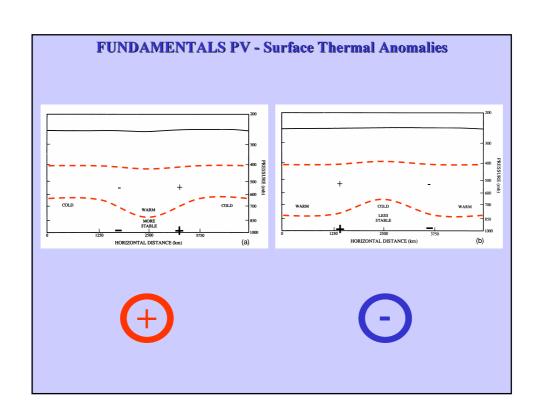
- b) Invertibility principle:

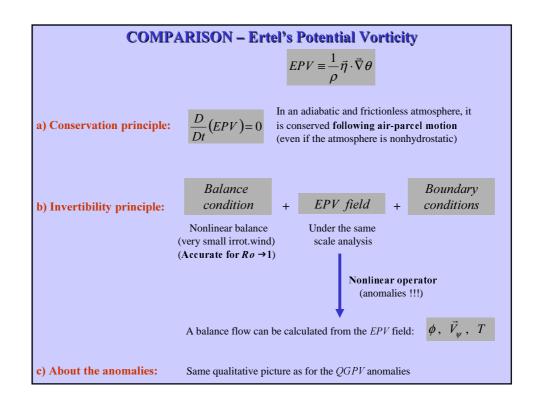
Balance condition

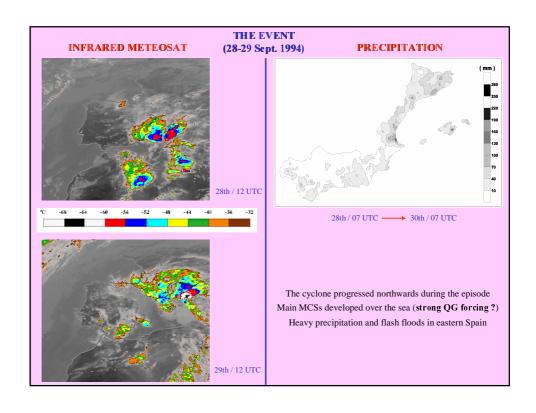
Boundary

Function of ϕ

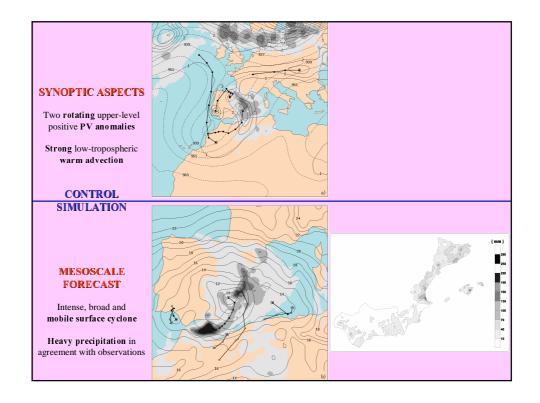

Geostrophic balance (Requires $Ro \rightarrow 0$)

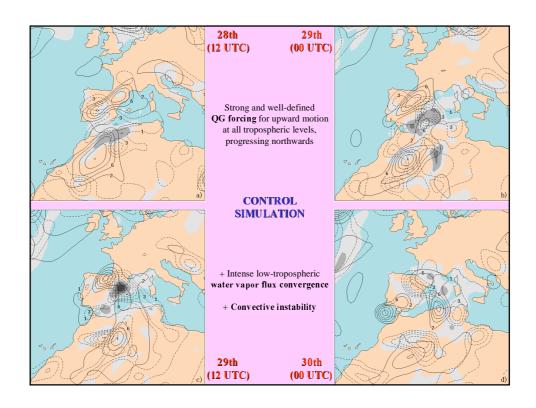

On ϕ / ϕ_n


Linear operator


A balance flow can be calculated from the QGPV field: ϕ , $\vec{V}_{\rm g}$, T

- $QGPV \begin{cases} \zeta_g + f & \text{Coriolis parameter increases with latitude} \\ \frac{\partial}{\partial p} \left(\frac{f_0}{\sigma} \frac{\partial \phi}{\partial p} \right) = -\frac{\partial}{\partial p} \left(\frac{f_0 R_d}{\sigma p} T \right) \approx -\frac{f_0 R_d}{\sigma p} \frac{\partial T}{\partial p} & <0 \text{ in troposphere} \\ >0 \text{ in stratosphere} \end{cases}$
- QGPV is typically higher/lower in high/low latitude, stratospheric/tropospheric air: Source of +/- anomalies
- +/- anomalies are consistent with positive/negative relative vorticity and (or ?) enhanced/reduced stability


CONTROL NUMERICAL SIMULATION


- * PSU-NCAR mesoscale model (non-hydrostatic version MM5)
- * Simulation:
 - 2 domains: 82x82x31 (60 and 20 km)
 - Interaction: two-way
 - I.C and B.C: NCEP global analysis + Surface and Upper air obs.
 - Period: 48 h, from 00 UTC 28 September 1994
- * Physical parameterizations:
 - PBL: Based on Blackadar (1979) scheme (Zhang and Anthes 1982)
 - **Ground temperature**: Force-restore slab model (Blackadar 1979)
 - Radiation fluxes: Considering cloud cover (Benjamin 1983)
 - Resolved-scale microphysics:

Cloud water, rainwater, cloud ice and snow (Dudhia 1989)

- Parameterized convection:

60 km: Betts-Miller (1986) 20 km: Kain-Fritsh (1990)

SENSITIVITY TO THE UPPER LEVEL PV ANOMALIES (motivation)

- * The two embedded **upper-level PV centres** seem to be playing an **important role** for the evolution, intensity and spatial extent of the **surface cyclone**
- * How a potential analysis and/or forecast **error** in the representation of these **PV anomalies** might affect the **mesoscale forecast**?
- * Sensitivity analysis based on additional simulations with perturbed initial conditions
- * A balanced flow associated with each anomaly must be found that can be used to alter the model initial conditions in a physically consistent way without introducing any significant noise in the model Piecewise PV inversion

PIECEWISE PV INVERSION TECHNIQUE (Davis and Emanuel; MWR 1991)

- 1) Balanced flow (ϕ, ψ) given instantaneous distribution of Ertel's PV (q):

$$\begin{array}{c|c} \textbf{Charney (1955) nonlinear} & \nabla^2 \phi = \boldsymbol{\nabla} \cdot f \boldsymbol{\nabla} \psi + 2m^2 \left[\frac{\partial^2 \psi}{\partial x^2} \frac{\partial^2 \psi}{\partial y^2} - \left(\frac{\partial^2 \psi}{\partial x \partial y} \right)^2 \right] \\ \end{array}$$

f Coriolis parameter

* Approximate form of Ertel's PV
$$q = \frac{g\kappa\pi}{p} \left[(f + m^2 \nabla^2 \psi) \frac{\partial^2 \phi}{\partial \pi^2} - m^2 \left(\frac{\partial^2 \psi}{\partial x \partial \pi} \frac{\partial^2 \phi}{\partial x \partial \pi} + \frac{\partial^2 \psi}{\partial y \partial \pi} \frac{\partial^2 \phi}{\partial y \partial \pi} \right) \right]$$

$$p \text{ pressure} \qquad g \text{ gravity} \qquad \kappa = Rd/Cp \qquad \pi = Cp (p/po)^{\kappa}$$

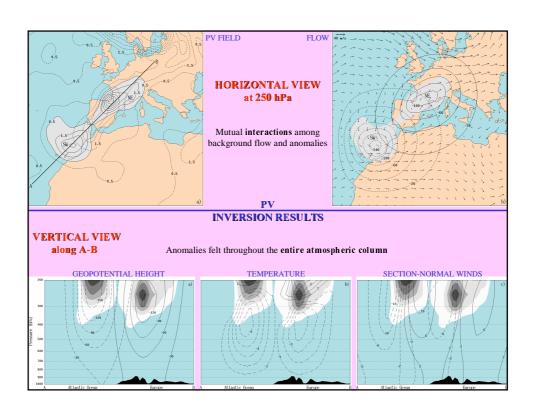
- * Bounday conditions Lateral (Dirichlet) / Top and Bottom(Neumann): $\frac{\partial \phi}{\partial \pi} = f \frac{\partial \psi}{\partial \pi} = -\theta$ θ potential temperature
- 2) Reference state: Balanced flow $(\overline{\phi}, \overline{\psi})$ given <u>time mean</u> distribution of Ertel's PV (\overline{q}) :
- * Same equations as in 1), except using time mean fields instead of instantaneous fields
- 3) Perturbation fields (ϕ ', ψ ', q') given by the definitions: $(q, \phi, \psi) = (\bar{q}, \bar{\phi}, \bar{\psi}) + (q', \phi', \psi')$

PIECEWISE PV INVERSION TECHNIQUE

- 4) We consider that q' is partitioned into N portions or anomalies: $q' = \sum_{n=1}^{N} q_n$
- 5) Piecewise inversion: (ϕ_n, ψ_n) associated with q_n ? ... and requiring: $\psi' = \sum_{n=1}^N \phi_n$... After substitution of the above summations in the

requiring:
$$\phi' = \sum_{n=1}^{N} \phi_n$$

balance and PV equations and some rearrangements of the nonlinear terms:


$$\nabla^2 \phi_n = \boldsymbol{\nabla} \cdot f \boldsymbol{\nabla} \psi_n + 2m^2 \left(\frac{\partial^2 \psi^*}{\partial x^2} \frac{\partial^2 \psi_n}{\partial y^2} + \frac{\partial^2 \psi^*}{\partial y^2} \frac{\partial^2 \psi_n}{\partial x^2} - 2 \frac{\partial^2 \psi^*}{\partial x \partial y} \frac{\partial^2 \psi_n}{\partial y \partial x} \right)$$

$$q_{n} = \frac{g\kappa\pi}{p} \left[(f + m^{2}\nabla^{2}\psi^{*}) \frac{\partial^{2}\phi_{n}}{\partial\pi^{2}} + m^{2} \frac{\partial^{2}\phi^{*}}{\partial\pi^{2}} \nabla^{2}\psi_{n} \right.$$
$$\left. - m^{2} \left(\frac{\partial^{2}\phi^{*}}{\partial x\partial\pi} \frac{\partial^{2}\psi_{n}}{\partial x\partial\pi} + \frac{\partial^{2}\phi^{*}}{\partial y\partial\pi} \frac{\partial^{2}\psi_{n}}{\partial y\partial\pi} \right) - m^{2} \left(\frac{\partial^{2}\psi^{*}}{\partial x\partial\pi} \frac{\partial^{2}\phi_{n}}{\partial x\partial\pi} + \frac{\partial^{2}\psi^{*}}{\partial y\partial\pi} \frac{\partial^{2}\phi_{n}}{\partial y\partial\pi} \right) \right]$$

where $()^* = \overline{()} + \frac{1}{2}()'$ **Boundary conditions:** Lateral (homogeneous) / Top and bottom (using $\theta_{n'}$

At 00 UTC 28 September 1994, using the NCEP-based isobaric analysis

- In our case study: Reference state: 6-day time average about 00 UTC 28 September
 - Anomalies: positive PV perturbations above 500 hPa SW and NE of Gulf of Cádiz

SENSITIVITY EXPERIMENTS

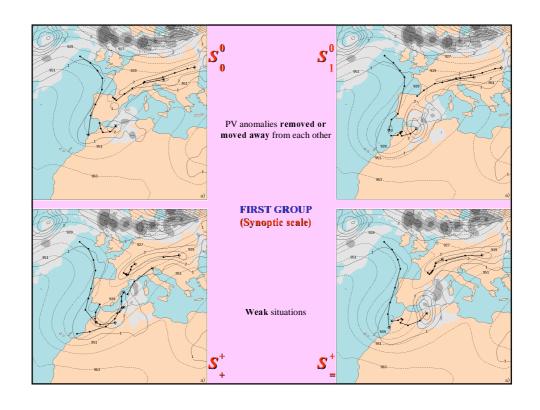
By adding and/or subtracting the PV-inverted balanced fields (geopotential, temperature and wind) into the model initial conditions

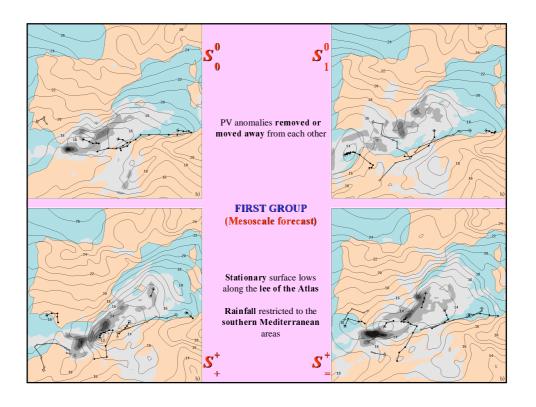
Sensitivity to the intensity

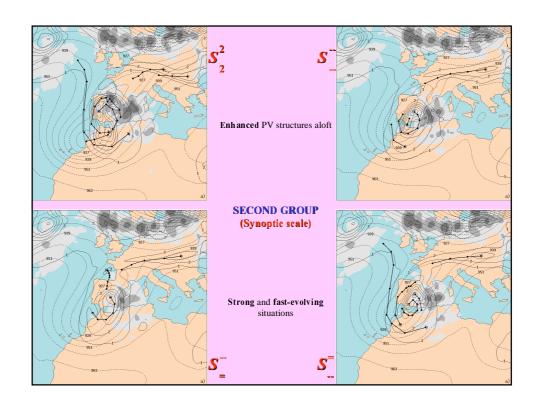
(One or both PV anomalies removed or doubled)

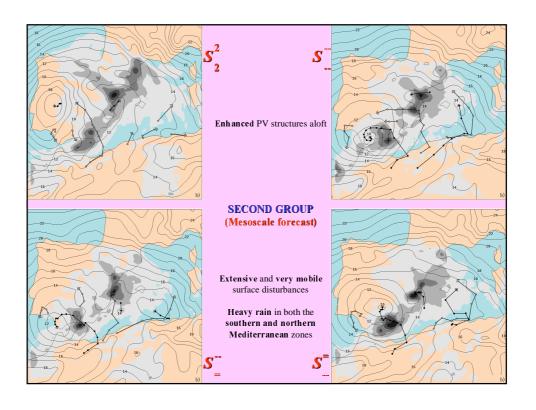
Experiment	SW anomaly	NE anomaly
S_0^0	Removed	Removed
S_{2}^{2}	Doubled	Doubled
S_1^0	Unchanged	Removed
S_2^0	Doubled	Removed
S_0^1	Removed	Unchanged
S_0^2	Removed	Doubled
S_2^1	Doubled	Unchanged

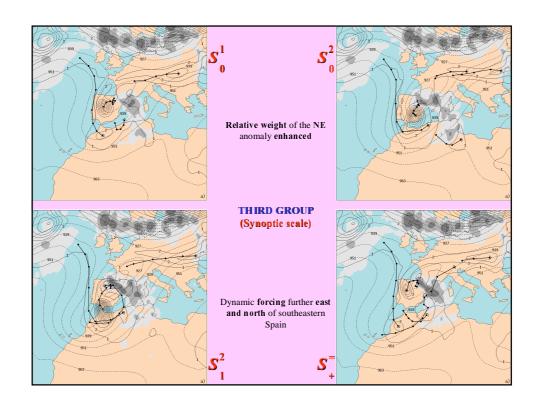
Unchanged

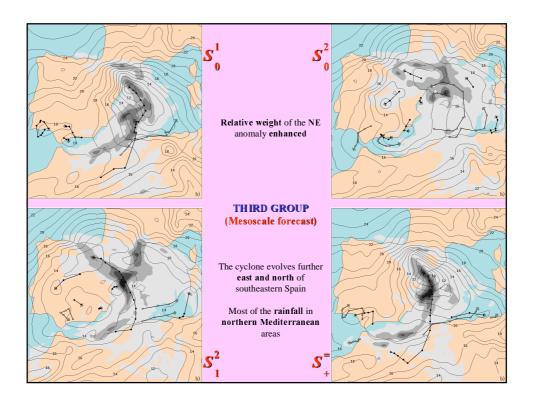

Doubled

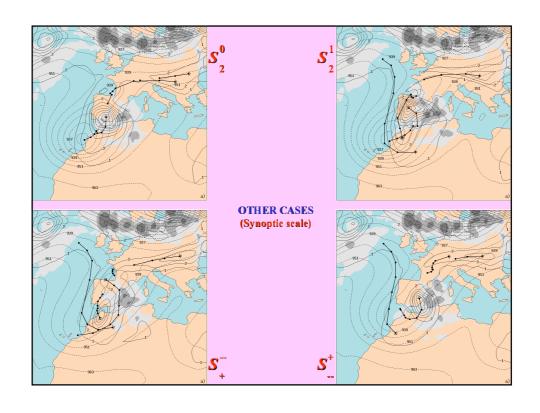

 S_1^2

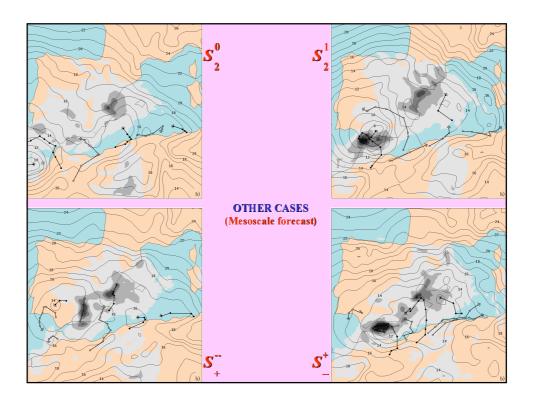

Sensitivity to the position

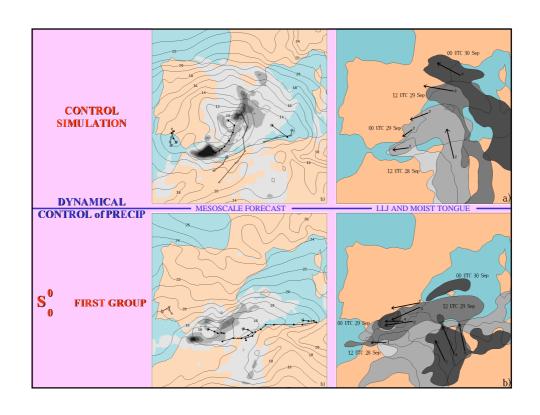

(One or both PV anomalies shifted 425 km along A-B)

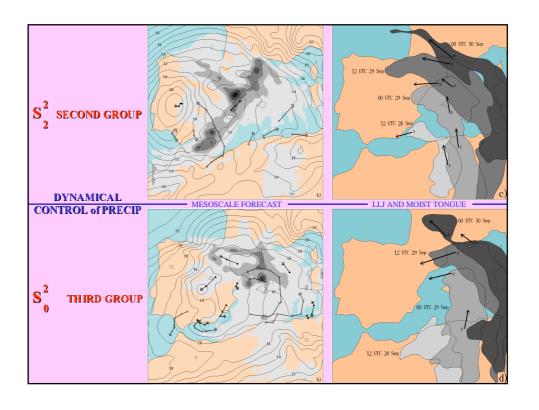

Experiment	SW anomaly	NE anomaly
S_	Moved inwards	Moved inwards
S ⁺ ₊	Moved outwards	Moved outwards
S=	Unchanged	Moved inwards
S ₊ -	Moved outwards	Moved inwards
S=	Moved inwards	Unchanged
S_+	Moved inwards	Moved outwards
S=	Moved outwards	Unchanged
S ₌ +	Unchanged	Moved outwards
	S S_+ S S S S S_+ S_+ S_+ S_+	S_{-}^{-} Moved inwards S_{+}^{+} Moved outwards S_{-}^{-} Unchanged S_{-}^{-} Moved outwards S_{-}^{-} Moved inwards S_{-}^{+} Moved inwards S_{-}^{+} Moved outwards

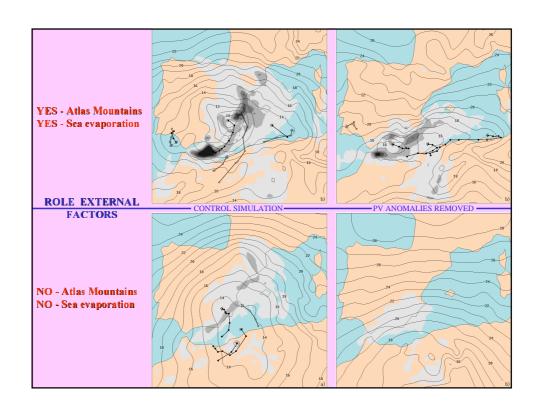


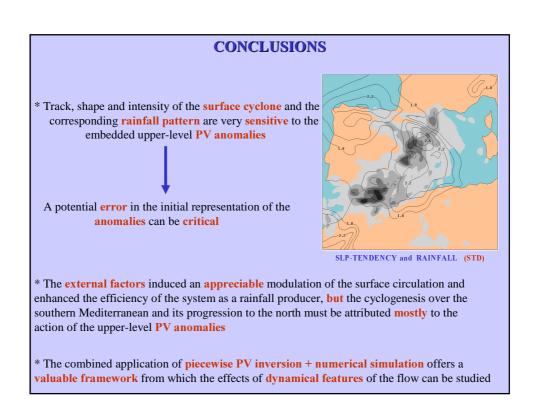












INTRODUCTION- Lecture 3

LIFE CYCLE OF AN INTENSE MEDITERRANEAN CYCLONE

PV THINKING An analysis of the cyclone event in terms of the **impacts** and **interactions** of dry and moist **PV anomalies** (and mean flow)

Beyond a qualitative analysis, how can these impacts and interactions be quantified ???

PV-BASED PROGNOSTIC SYSTEM + FACTOR SEPARATION