

FACTOR SEPARATION STUDY 2 factors				
Experiment	Atlas orography	Latent heat exchange		
Fo	no	no		
\mathbf{F}_{1}	yes	no		
F2	no	yes		
F12	yes	yes		
Effect of the Atlas Mountains = F1 - F0				

Effect of the interaction Atlas/Latent heat = $F_{12} - (F_{1}+F_{2}) + F_{0}$

SENSITIVITY TO THE UPPER LEVEL PV ANOMALIES (motivation)

* The two embedded upper-level PV centres seem to be playing an important role for the evolution, intensity and areal extent of the surface cyclone

* How a potential analisis and/or forecast error in the representation of these PV anomalies might affect the mesoscale forecast ?

* Sensitivity analysis based on additional simulations with perturbed initial conditions

* A balanced flow associated with each anomaly must be found that can be used to alter the model initial conditions in a physically consistent way without introducing any significant noise in the model — Piecewise PV inversion

SENSITIVITY EXPERIMENTS

By adding and/or subtracting the PV-inverted balanced fields (geopotential, temperature and wind) into the model initial conditions

(One or both PV anomalies removed or doubled)				
Experiment	SW anomaly	NE anomaly		
S_0^0	Removed	Removed		
S_{2}^{2}	Doubled	Doubled		
S_{1}^{0}	Unchanged	Removed		
S_{2}^{0}	Doubled	Removed		
S_0^1	Removed	Unchanged		
S_{0}^{2}	Removed	Doubled		
S_2^1	Doubled	Unchanged		
S_1^2	Unchanged	Doubled		

Sensitivity to the intensity

Experiment	SW anomaly	NE anomaly	
S_	Moved inwards	Moved inwards	
S_{+}^{+}	Moved outwards	Moved outwards	
$S_{=}^{-}$	Unchanged	Moved inwards	
S_+	Moved outwards	Moved inwards	
$S_{-}^{=}$	Moved inwards	Unchanged	
S_+	Moved inwards	Moved outwards	
$S_{+}^{=}$	Moved outwards	Unchanged	
$S^+_=$	Unchanged	Moved outwards	

Sensitivity to the position (One or both PV anomalies shifted 425 km along A-B)

.

CONCLUSIONS

1) Factor separation technique: Numerical simulations can be utilized to obtain the pure contribution of any factor to any predicted field, as well as the contributions due to the mutual interactions among two or more factors. But remember:

- n factors $\longrightarrow 2^n$ simulations

- The interactions can be **complex** and difficult to interpret

2) The combined application of piecewise **PV inversion** and **numerical simulation** offers a valuable and unique **framework** from which the effects of **dynamical features** of the flow can be studied in a practical and physically consistent way

Note: The piecewise PV inversion code for MM5 / Vis5D is available from the author by e-mail (Romu.Romero@uib.es)