APPLICATION OF FACTOR SEPARATION AND PV INVERSION TO HEAVY RAINFALL AND CYCLOGENESIS EVENTS: MEDITERRANEAN EXAMPLES

STRUCTURE

- Introduction: The Factor Separation technique
- Part 1: Boundary factors and Model Physics factors

Romero, R., Doswell, C. A. III and Ramis, C., 2000: Mesoscale numerical study of two cases of long-lived quasistationary convective systems over eastern Spain. *Mon. Wea. Rev.*, 128, 3731-3751.

• Part 2: Dynamical factors - Piecewise PV inversion

Romero, R., 2001: Sensitivity of a heavy rain producing Western Mediterranean cyclone to embedded potential vorticity anomalies. *Quart. J. R. Meteorol. Soc.*, 127, 2559-2597.

• Part 3: Ensemble Prediction - PV-error climatology

Vich, M., R. Romero, and H. E. Brooks/V. Homar, 2011: Ensemble prediction of Mediterranean high-impact events using potential vorticity perturbations. *Atmos. Res.*, 102, 224-241 (Part I) and 311-319 (Part II).

• Part 4: Quantitative implementation of *PV-thinking*

Romero, R., 2008: A method for quantifying the impacts and interactions of potential-vorticity anomalies in extratropical cyclones. Quart. J. R. Meteorol. Soc., 134, 385-402.

THE STUDY OF ATMOSPHERIC PHENOMENA

- Observations (limited in number, space and time)
- Theory (requires simplifications)
- Experimentation (*Numerical Modeling*)

Method of Stein and Alpert (1993)							
n fac	2^{n}	simulations					
Experiment	Atlas orography	Latent heat exchang					
Fo	no	no					
F1	yes	no					
F2	no	yes					
F12	yes	yes					
Effect of the A	tlas Mountains = F1 - 1	Fo					

SENSITIVITY EXPERIMENTS								
By adding and/or subtracting the PV-inverted balanced fields (geopotential, temperature and wind) into the model initial conditions								
Sensitivity to the intensity (One or both PV anomalies removed or doubled)			_	Sensitivity to the position (One or both PV anomalies shifted 425 km along A-B)				
Experiment	SW anomaly	NE anomaly		Experiment	SW anomaly	NE anomaly		
S_{0}^{0}	Removed	Removed		S_{-}^{-}	Moved inwards	Moved inwards		
S_{2}^{2}	Doubled	Doubled		S_{+}^{+}	Moved outwards	Moved outwards		
S_1^0	Unchanged	Removed		$S_{=}^{-}$	Unchanged	Moved inwards		
S_{2}^{0}	Doubled	Removed		S_{+}^{-}	Moved outwards	Moved inwards		
S_0^1	Removed	Unchanged		$S_{-}^{=}$	Moved inwards	Unchanged		
S_{0}^{2}	Removed	Doubled		S^+	Moved inwards	Moved outwards		
S_{2}^{1}	Doubled	Unchanged		$S_{+}^{=}$	Moved outwards	Unchanged		
S_{1}^{2}	Unchanged	Doubled		$S^+_=$	Unchanged	Moved outwards		

INTRODUCTION - PART 3

PV-BASED PROGNOSTIC SYSTEM (Davis and Emanuel; *MWR* 1991) **0)** A balanced flow has been first found using the PV inversion technique: $q \longrightarrow (\phi, \psi)$ **1)** Tendency of the Charney (1955) nonlinear balance equation: $\nabla^{2}\phi^{t} = \nabla \cdot f \nabla \psi^{t} + 2m^{2} \left[\frac{\partial^{2}\psi^{t}}{\partial x^{2}} \frac{\partial^{2}\psi}{\partial y^{2}} + \frac{\partial^{2}\psi}{\partial x^{2}} \frac{\partial^{2}\psi^{t}}{\partial y^{2}} - 2 \frac{\partial^{2}\psi}{\partial x \partial y} \frac{\partial^{2}\psi^{t}}{\partial x \partial y} \right]$ **2)** Tendency of the approximate form of Ertel's PV: $q^{t} = \frac{g\kappa\pi}{p} \left[(f + m^{2}\nabla^{2}\psi) \frac{\partial^{2}\phi^{t}}{\partial \pi^{2}} + m^{2} \frac{\partial^{2}\phi}{\partial \pi^{2}} \nabla^{2}\psi^{t} - m^{2} \left(\frac{\partial^{2}\psi^{t}}{\partial x \partial \pi} \frac{\partial^{2}\phi}{\partial x \partial \pi} + \frac{\partial^{2}\psi}{\partial x \partial \pi} \frac{\partial^{2}\phi}{\partial y \partial \pi} + \frac{\partial^{2}\psi}{\partial y \partial \pi} \frac{\partial^{2}\phi}{\partial y \partial \pi} + \frac{\partial^{2}\psi}{\partial y \partial \pi} \frac{\partial^{2}\phi^{t}}{\partial y \partial \pi} \right]$ **3)** Ertel's PV tendency equation (frictionless but with diabatic term included): $q^{t} = -m(V_{\psi} + V_{\chi}) \cdot \nabla q - \omega^{*} \frac{\partial q}{\partial \pi} + \frac{m}{\rho} \eta \cdot \nabla LH$ Horizontal wind Vertical velocity $V_{\chi} = m\nabla\chi$ $\omega^{*} = \frac{d\pi}{dt} = \frac{\kappa\pi}{p}\omega$

